Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Report
  • Published:

Phosphoinositide 3-kinase accelerates autophagic cell death during glucose deprivation in the rat cardiomyocyte-derived cell line H9c2

Abstract

We investigated cell death during glucose deprivation in rat cardiomyocyte-derived H9c2 cells. Electron microscopic analysis revealed accumulation of autophagic vacuoles during glucose deprivation. The addition of 3-methyladenine or LY294002, which are known to inhibit autophagosome formation, reduced cell death while Z-VAD-FMK, a caspase inhibitor, slightly affected cell death. Thus, cell death during glucose deprivation is not type I programmed cell death (apoptotic cell death) but type II programmed cell death (autophagic cell death). Moreover, we found that both insulin-like growth factor-I and the adenovirus-mediated overexpression of wild-type class I PI 3-kinase accelerated cell death as well as accumulation of autophagic vacuoles during glucose deprivation while dominant-negative PI 3-kinase reduced these phenomena. The results indicate that IGF-I/PI 3-kinase accelerates the accumulation of autophagic vacuoles and subsequent autophagic cell death during glucose deprivation, revealing the opposing role of IGF-I/PI 3-kinase in two distinct types of programmed cell death (apoptotic and autophagic cell death).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

PI:

phosphoinositide

3MA:

3-methyladenine

Z-VAD-FMK:

benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone

IGF:

insulin-like growth factor

LC3:

microtubule-associated protein 1 light chain 3

References

  • Aki T, Mizukami Y, Oka Y, Yamaguchi K, Uemura K, Fujimiya T and Yoshida K . (2001). Biochem. J., 358, 481–487.

  • Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Mitchel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC and Agid Y . (1997). Histol. Histopathol., 12, 25–31.

  • Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meuijer AJ, Codogno P and Ogier-Dennis E . (2001). J. Biol. Chem., 276, 35243–35246.

  • Biederbick A, Kern HF and Elasser HP . (1995). Eur. J. Cell Biol., 66, 3–14.

  • Blommaart EFC, Krause U, Schellens JPM, Vreeling-Sindelárová H and Meijer AJ . (1997). Eur. J. Biochem., 243, 240–246.

  • Bursch W . (2001). Cell Death and Differ., 8, 569–581.

  • Chi S, Kitanaka C, Noguchi K, Mochizuki T, Nagashima Y, Shirouzu M, Fujita H, Yoshida M, Chen W, Asai A, Himeno M, Yokoyama S and Kuchino Y . (1999). Oncogene, 18, 2281–2290.

  • Clarke PGH . (1990). Anat. Embryol., 181, 195–213.

  • Fiers W, Beyaert R, Declercq W and Vandenabeele P . (1999). Oncogene, 18, 7719–7730.

  • Inbal B, Bialik S, Sabanay I, Shani and Kimchi A . (2002). J. Cell Biol., 157, 455–468.

  • Izuishi K, Kato K, Ogura T, Kinoshita T and Esumi H . (2000). Cancer Res., 60, 6201–6207.

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y and Yoshimori T . (2000). EMBO J., 19, 5720–5728.

  • Katagiri H, Asano T, Inukai K, Ogihara T, Ishihara H, Shibasaki Y, Murata VT, Terasaki J, Kikuchi M, Yazaki Y and Oka Y . (1997). Am. J. Physiol., 272, E326–E331.

  • Katagiri H, Asano T, Ishihara H, Inukai K, Shibasaki Y, Kikuchi M, Yazaki Y and Oka Y . (1996). J. Biol. Chem., 271, 16987–16990.

  • Kegal BK, Kim M, Sapp E, McIntyre C, Castãno JG, Aronin N and DiFiglia M . (2000). J. Neurosci., 20, 7268–7278.

  • Kitanaka C, Kato K, Ijiri R, Sakurada K, Tomiyama A, Noguchi K, Nakagawara A, Momoi T, Toyoda Y, Kigasawa H, Nishi T, Shirouzu M, Yokoyama S, Tanaka Y and Kuchino Y . (2002). J. Natl. Cancer Inst., 94, 358–368.

  • Kitanaka C and Kuchino Y . (1999). Cell Death and Differ., 6, 508–515.

  • Klionsky DJ and Ohsumi Y . (1999). Annu. Rev. Cell Dev. Biol., 15, 1–32.

  • Matsui T, Li L, del Monte F, Fukui Y, Franke TF, Hajjar RJ and Rosenzweig A . (1999). Circulation, 100, 2373–2379.

  • Munafó DB and Colombo MI . (2001). J. Cell Sci., 114, 3619–3629.

  • Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ, Koga Y, Sue CM, Yamamoto A, Murakami N, Shanske S, Byrne E, Bonilla E, Nonaka I, DiMauro S and Hirano M . (2000). Nature, 406, 906–910.

  • Nixon RA, Cataldo AM and Mathews PM . (2000). Neurochem. Res., 25, 1161–1172.

  • Ohsumi Y . (2001). Nat. Rev. Mol. Cell Biol., 2, 211–216.

  • Petiot A, Ogier-Denis E, Blommaart EEC, Meijer AJ and Codogno P . (2000). J. Biol. Chem., 275, 992–998.

  • Rameh LE and Cantley LC . (1999). J. Biol. Chem., 274, 8347–8350.

  • Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD and Downward J . (1994). Nature, 370, 527–532.

  • Schweichel JU and Merker HJ . (1973). Teratology, 7, 253–266.

  • Seglen PO and Gordon PB . (1982). Proc. Natl. Acad. Sci. USA, 79, 1889–1892.

  • Seglen PO and Bohley P . (1992). Experientia, 48, 158–172.

  • Tanaka Y, Guhde G, Suter A, Eskelinen E-L, Hartmann D, Lüllmann-Rauch R, Janssen PML, Blanz J, Figura KV and Saftig P . (2000). Nature, 406, 902–906.

  • Zakeri Z, Bursch W, Tenniswood M and Lockshin RA . (1995). Cell Death Differ., 2, 87–96.

Download references

Acknowledgements

The authors would like to thank Dr Yoshitomo Oka (Tohoku University) for his kind gift of recombinant adenoviruses of wild-type and dominant-negative PI 3-kinases and Dr Tamotsu Yoshimori (National Institute of Genetics) for providing antibodies against LC3. This work was supported in part by grants from the Ministry of Education, Science and Culture of Japan, Yamanouchi Foundation for Research on Metabolic Disorders, The Inamori Foundation, The Kowa Life Science Foundation, Takeda Science Foundation, The Mochida Memorial Foundation for Medical and Pharmaceutical Research, Japan Heart Foundation Research Grant, NOVARTIS Foundation (Japan) for the Promotion of Science, Research Program for Special Promotion of the Venture Business Laboratory, Yamaguchi University, Osaka Cancer Research Foundation, The Old Age Research Foundation of Yamaguchi, and Yamaguchi Industrial Promotion Foundation (for YM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Aki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aki, T., Yamaguchi, K., Fujimiya, T. et al. Phosphoinositide 3-kinase accelerates autophagic cell death during glucose deprivation in the rat cardiomyocyte-derived cell line H9c2. Oncogene 22, 8529–8535 (2003). https://doi.org/10.1038/sj.onc.1207197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207197

Keywords

This article is cited by

Search

Quick links