Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Homotypic and heterotypic interactions of EWS, FLI1 and their oncogenic fusion protein

Abstract

In Ewing's sarcoma family tumors, the ets transcription factor gene FLI1 is rearranged with one EWS allele resulting in coexpression of germline EWS and chimeric EWS-FLI1 proteins. Here, we investigated the potential of germline EWS, FLI1 and EWS-FLI1 to oligomerize. In two functional in vivo tests, fluorescence resonance energy transfer (FRET) and the mammalian two-hybrid (MTH) assay, self-association of EWS and EWS-FLI1, but not of FLI1 was detected. In addition, interaction of EWS-FLI1 with EWS and FLI1 was observed. GST pull-down assays and immunoprecipitation experiments largely confirmed these results. The EWS N-terminal domain present in both EWS and EWS-FLI1 was found to contribute to homotypic and heterotypic interactions of these proteins. However, in the context of germline EWS, the presence of the whole or part of the C-terminal RNA-binding domain greatly supported the self-association potential of the protein. Involvement of an RNA component in EWS oligomerization was confirmed by sensitivity of the corresponding GST pull-down assay to RNaseA treatment. In contrast, EWS-FLI1 was able to self-associate and also bind to FLI1 via its C-terminal domain, which comprises the FLI1 DNA-binding motif. Accordingly, the EWS-FLI1 interaction was not disrupted by RNaseA treatment. Despite its potential to oligomerize, EWS-FLI1 bound to a tandem ets-binding site of the TGFβ type II receptor promoter as a monomer. Therefore, the functional consequences of homo- and hetero-oligomerization of EWS and EWS-FLI1 proteins remain to be elucidated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Arvand A, Bastians H, Welford SM, Thompson AD, Ruderman JV and Denny CT . (1998). Oncogene, 17, 2039–2045.

  • Arvand A, Welford SM, Teitell MA and Denny CT . (2001). Cancer Res., 61, 5311–5317.

  • Bailly RA, Bosselut R, Zucman J, Cormier F, Delattre O, Roussel M, Thomas G and Ghysdael J . (1994). Mol. Cell. Biol., 14, 3230–3241.

  • Bertolotti A, Melot T, Acker J, Vigneron M, Delattre O and Tora L . (1998). Mol. Cell. Biol., 18, 1489–1497.

  • Carrere S, Verger A, Flourens A, Stehelin D and Duterque-Coquillaud M . (1998a). Oncogene, 16, 3261–3268.

  • Carrere S, Verger A, Flourens A, Stehelin D and Duterque-Coquillaud M . (1998b). Oncogene, 16, 3261–3268.

  • Chansky HA, Hu M, Hickstein DD and Yang L . (2001). Cancer Res., 61, 3586–3590.

  • Dauphinot L, De Oliveira C, Melot T, Sevenet N, Thomas V, Weissman BE and Delattre O . (2001). Oncogene, 20, 3258–3265.

  • Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, Kovar H, Joubert I, De Jong P and Rouleau G . et al. (1992). Nature, 359, 162–165.

  • Deloulme JC, Prichard L, Delattre O and Storm DR . (1997). J. Biol. Chem., 272, 27369–27377.

  • Felsch JS, Lane WS and Peralta EG . (1999). Curr. Biol., 9, 485–488.

  • Feng L and Lee KA . (2001). Oncogene, 20, 4161–4168.

  • Fitzsimmons D, Hodsdon W, Wheat W, Maira SM, Wasylyk B and Hagman J . (1996). Genes Dev., 10, 2198–2211.

  • Fukuma M, Okita H, Hata J and Umezawa A . (2003). Oncogene, 22, 1–9.

  • Ginsberg JP, De Alava E, Ladanyi M, Wexler LH, Kovar H, Paulussen M, Zoubek A, Dockhorn-Dworniczak B, Juergens H, Wunder JS, Andrulis IL, Malik R, Sorensen PH, Womer RB and Barr FG . (1999). J. Clin. Oncol., 17, 1809–1180.

  • Guinamard R, Fougereau M and Seckinger P . (1997). Scand. J. Immunol., 45, 587–595.

  • Hahm KB, Cho K, Lee C, Im YH, Chang J, Choi SG, Sorensen PH, Thiele CJ and Kim SJ . (1999). Nat. Genet., 23, 222–227.

  • Jaishankar S, Zhang J, Roussel MF and Baker SJ . (1999). Oncogene, 18, 5592–5597.

  • Kim J, Lee JM, Branton PE and Pelletier J . (1999). Proc. Natl. Acad. Sci. USA, 96, 14300–14305.

  • Kim J, Lee JM, Branton PE and Pelletier J . (2000). FEBS Lett., 474, 121–128.

  • Kleiman FE and Manley JL . (1999). Science, 285, 1576–1579.

  • Kleiman FE and Manley JL . (2001). Cell, 104, 743–753.

  • Knoop LL and Baker SJ . (2000). J. Biol. Chem., 275, 24865–24871.

  • Knoop LL and Baker SJ . (2001). J. Biol. Chem., 276, 22317–22322.

  • Kovar H, Aryee DN, Jug G, Henockl C, Schemper M, Delattre O, Thomas G and Gadner H . (1996). Cell Growth Differ., 7, 429–437.

  • Kovar H, Jug G, Hattinger C, Spahn L, Aryee DN, Ambros PF, Zoubek A and Gadner H . (2001). Cancer Res., 61, 5992–5997.

  • Ladanyi M and Gerald W . (1994). Cancer Res., 54, 2837–2840.

  • Lessnick SL, Braun BS, Denny CT and May WA . (1995). Oncogene, 10, 423–431.

  • Lessnick SL, Dacwag CS and Golub TR . (2002). Cancer Cell, 1, 393–401.

  • Li KK and Lee KA . (2000). J. Biol. Chem., 275, 23053–23058.

  • Li R, Pei H and Watson DK . (2000). Oncogene, 19, 6514–6523.

  • Lin PP, Brody RI, Hamelin AC, Bradner JE, Healey JH and Ladanyi M . (1999). Cancer Res., 59, 1428–1432.

  • Matsumoto Y, Tanaka K, Nakatani F, Matsunobu T, Matsuda S and Iwamoto Y . (2001). Br. J. Cancer, 84, 768–775.

  • Mavrothalassitis G and Ghysdael J . (2000). Oncogene, 19, 6524–6532.

  • May WA, Arvand A, Thompson AD, Braun BS, Wright M and Denny CT . (1997). Nat. Genet., 17, 495–497.

  • May WA, Gishizky ML, Lessnick SL, Lunsford LB, Lewis BC, Delattre O, Zucman J, Thomas G and Denny CT . (1993). Proc. Natl. Acad. Sci. USA, 90, 5752–5756.

  • Ohno T, Rao VN and Reddy ES . (1993). Cancer Res., 53, 5859–5863.

  • Olsen RJ and Hinrichs SH . (2001). Oncogene, 20, 1756–1764.

  • Ouchida M, Ohno T, Fujimura Y, Rao VN and Reddy ES . (1995). Oncogene, 11, 1049–1054.

  • Petermann R, Mossier BM, Aryee DN, Khazak V, Golemis EA and Kovar H . (1998). Oncogene, 17, 603–610.

  • Rao VN, Ohno T, Prasad DD, Bhattacharya G and Reddy ES . (1993). Oncogene, 8, 2167–2173.

  • Schmid JA, Scholze P, Kudlacek O, Freissmuth M, Singer EA and Sitte HH . (2001). J. Biol. Chem., 276, 3805–3810.

  • Schmid JA and Sitte HH . (2003). Curr. Opin. Oncol., 15, 55–64.

  • Sorensen PH, Lessnick SL, Lopez Terrada D, Liu XF, Triche TJ and Denny CT . (1994). Nat. Genet., 6, 146–151.

  • Spahn L, Petermann R, Siligan C, Schmid JA, Aryee DN and Kovar H . (2002). Cancer Res., 62, 4583–4587.

  • Thompson AD, Braun BS, Arvand A, Stewart SD, May WA, Chen E, Korenberg J and Denny C . (1996). Oncogene, 13, 2649–2658.

  • Toretsky JA, Connell Y, Neckers L and Bhat NK . (1997). J. Neurooncol., 31, 9–16.

  • Venkitaraman AR . (2001). J. Cell Sci., 114, 3591–3598.

  • Welford SM, Hebert SP, Deneen B, Arvand A and Denny CT . (2001). J. Biol. Chem., 276, 41977–41984.

  • Xia Z and Liu Y . (2001). Biophys. J., 81, 2395–2402.

  • Yang L, Chansky HA and Hickstein DD . (2000). J. Biol. Chem., 275, 37612–37618.

  • Zhang D, Paley AJ and Childs G . (1998). J. Biol. Chem., 273, 18086–18091.

  • Zwerner JP and May WA . (2001). Oncogene, 20, 626–633.

Download references

Acknowledgements

This study was supported in part by Grants 13708GEN and 14299GEN of the Austrian Science Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Kovar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spahn, L., Siligan, C., Bachmaier, R. et al. Homotypic and heterotypic interactions of EWS, FLI1 and their oncogenic fusion protein. Oncogene 22, 6819–6829 (2003). https://doi.org/10.1038/sj.onc.1206810

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206810

Keywords

This article is cited by

Search

Quick links