Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

The early response gene IEX-1 attenuates NF-κB activation in 293 cells, a possible counter-regulatory process leading to enhanced cell death

Abstract

The early response gene IEX-1 is involved in the regulation of cellular growth and survival, and its expression is related to stress-, growth- and death-inducing signals. Addressing the role of IEX-1 in the promotion of apoptosis, we investigated the effect of IEX-1 on nuclear factor-κB (NF-κB) activation. Stably transfected HEK-293 cells conditionally overexpressing IEX-1 exhibit decreased levels of NF-κB activity, either basal or TNFα induced, as shown by gel-shift and luciferase reporter gene assay. Furthermore, activated p65 accumulated in the nuclei of 293 cells to a lower degree, if IEX-1 expression was increased. This inhibited NF-κB activation was preceded by an altered turnover of IκBα and phospho-IκBα. In addition, IEX-1 expression also inhibited the activity of the 26S-proteasome, as shown by a fluorometric proteasome assay. Conversely, disruption of IEX-1 expression in 293 cells by stable transfection with specific anti-IEX-1 hammerhead ribozymes increased NF-κB activity, and accelerated the degradation of IκBα. Along with these opposite effects of IEX-1 expression and IEX-1 disruption on NF-κB activation, the sensitivity of 293 cells towards various apoptotic stimuli also changed. In contrast to ribozyme-transduced 293 cells that were significantly less sensitive to apoptosis, this sensitivity was enhanced if IEX-1 expression was increased. Our data suggest that IEX-1 – itself an NF-κB target gene – inhibits the activation of this transcription factor, and hereby may counteract the antiapoptotic potential of NF-κB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

NF-κB:

nuclear factor-κB

IκB:

inhibitor κB

IKK:

IκB kinase

Suc-LLVY-AMC:

N-succinyl-L-leucyl-L-leucyl-L-valyl-L-tyrosyl-7-amido-4-methylcumarin

Tet:

tetracycline

References

  • Arlt A, Grobe O, Sieke A, Kruse ML, Fölsch UR, Schmidt WE and Schäfer H . (2001). Oncogene, 20, 69–76.

  • Baldwin AS . (2001). J. Clin. Invest., 107, 241–246.

  • Baumeister W, Walz J, Zühl F and Seemüller E . (1998). Cell, 86, 367–380.

  • Charles CH, Yoon JK, Simske JS and Lau LF . (1993). Oncogene, 8, 797–801.

  • Chen D, Li X, Zhai Z and Shu H-B . (2002a). J. Biol. Chem., 277, 15985–15991.

  • Chen BC, Wu W-T, Ho F-M and Lin W-W . (2002b). J. Biol. Chem., 277, 24169–24179.

  • De Keulenaer GW, Wang Y, Feng Y, Muangman S, Yamamoto K, Thompson JF, Turi TG, Landschutz K and Lee RT . (2002). Circ. Res., 90, 690–696.

  • Garcia J, Ye Y, Arranz V, Letourneux C, Pezeron G and Porteu F . (2002). EMBO J., 21, 5151–5163.

  • Ghosh S, May MJ and Kopp EB . (1998). Annu. Rev. Immunol., 16, 225–260.

  • Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Baumeister W, Fried VA and Finley D . (1998). Cell, 94, 615–623.

  • Grobe O, Arlt A, Ungefroren H, Krupp G, Fölsch UR, Schmidt WE and Schäfer H . (2001). FEBS Lett., 494, 196–200.

  • Huang Y-H, Wu JY, Zhang Y and Wu MX . (2002). Oncogene, 21, 6819–6128.

  • Im HJ, Craig TA, Pittelkow MR and Kumar R . (2002a). Oncogene, 21, 3706–3714.

  • Im HJ, Pittelkow MR and Kumar R . (2002b). J. Biol. Chem., 277, 14612–14621.

  • Karin M, Cao Y, Greten FR and Li ZW . (2002). Nat. Rev. Cancer, 2, 301–310.

  • Kobayashi T, Pittelkow MR, Warner GM, Squillace KA and Kumar R . (1998). Biochem. Biophys. Res. Commun., 251, 868–873.

  • Kondratyev AD, Chung KN and Jung MO . (1996). Cancer Res., 56, 1498–1502.

  • Kumar R, Kobayashi T, Warner GM, Wu Y, Salisbury JL, Lingle W and Pittelkow MR . (1998). Biochem. Biophys. Res. Commun., 253, 336–341.

  • Masdehors P, Merle-Béral H, Maloum K, Omurs S, Magdelénat H and Delic J . (2000). Blood, 96, 269–274.

  • Morgenstern JP and Land H . (1990). Nucleic Acids Res., 18, 3587–3596.

  • Ohki R, Yamamoto K, Mano H, Lee RT, Ikeda U and Shimada K . (2002). J. Hypertens., 20, 685–691.

  • Pietzsch A, Büchler C, Aslanidis C and Schmitz G . (1997). Biochem. Biophys. Res. Commun., 235, 4–9.

  • Pietzsch A, Buchler C and Schmitz G . (1998). Biochem. Biophys. Res. Commun., 245, 651–657.

  • Schäfer H, Lettau P, Trauzold A, Banasch M and Schmidt WE . (1999a). Pancreas, 18, 378–384.

  • Schäfer H, Arlt A, Trauzold A, Hünermann-Jansen A and Schmidt WE . (1999b). Biochem. Biophys. Res. Commun., 262, 139–145.

  • Schäfer H, Trauzold A, Sebens T, Deppert W, Fölsch UR and Schmidt WE . (1998a). Oncogene, 16, 2479–2487.

  • Schäfer H, Diebel J, Arlt A, Trauzold A and Schmidt WE . (1998b). FEBS Lett., 436, 139–143.

  • Schäfer H, Trauzold A, Siegel EG, Fölsch UR and Schmidt WE . (1996). Cancer Res., 56, 2641–2648.

  • Schilling D, Pittelkow MR and Kumar R . (2001). Oncogene, 20, 7992–7997.

  • Segev DL, Ha TU, Tran TT, Kenneally M, Harkin P, Jung M, MacLaughlin DT, Donahoe PK and Maheswaran S . (2000). J. Biol. Chem., 275, 28371–28379.

  • Segev DL, Hoshiya Y, Stephen AE, Hoshiya M, Tran TT, MacLaughlin DT, Donahoe PK and Maheswaran S . (2001). J. Biol. Chem., 276, 26799–26806.

  • Seitz CS, Deng H, Hinata K, Lin Q and Khavari PA . (2000). Cancer Res., 60, 4085–4092.

  • Spitkovsky D, Hehner SP, Hofmann TG, Möller A and Schmitz ML . (2002). J. Biol. Chem., 277, 25576–25582.

  • Tak PP and Firestein GS . (2001). J. Clin. Invest., 107, 7–11.

  • Tone Y and Toh-e A . (2002). Genes Dev., 16, 3142–3157.

  • Um JH, Kang CD, Lee BG, Kim DW, Chung BS and Kim SH . (2001). Oncogene, 20, 6048–6056.

  • Van Antwerp DJ, Martin SJ, Kafri T, Green DR and Verma IM . (1996). Science, 274, 787–789.

  • van Hogerlinden M, Auer G and Toftgard R . (2002). Oncogene, 21, 4969–4977.

  • Wang CY, Mayo MW and Baldwin Jr AS . (1996). Science, 274, 784–787.

  • Wu MX, Ao Z, Prasad KV, Wu R and Schlossman SF . (1998). Science, 281, 998–1001.

  • Zhang Y, Schlossman SF, Edwards RA, Ou CN, Gu J and Wu MX . (2002). Proc. Natl. Acad. Sci. USA, 99, 878–883.

Download references

Acknowledgements

We thank Mr Hermann and Ms Wenzel for preparation of the illustrations. This study was supported by a grant of the German Research Society (DFG/SFB415-A13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiner Schäfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arlt, A., Kruse, ML., Breitenbroich, M. et al. The early response gene IEX-1 attenuates NF-κB activation in 293 cells, a possible counter-regulatory process leading to enhanced cell death. Oncogene 22, 3343–3351 (2003). https://doi.org/10.1038/sj.onc.1206524

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206524

Keywords

This article is cited by

Search

Quick links