Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Activation of Stat3 by cell confluence reveals negative regulation of Stat3 by cdk2

Abstract

The signal transducing protein Stat3 activates gene transcription in cells in response to multiple cytokines. Constitutive activation of Stat3 has been observed in solid tumors including head and neck squamous cell carcinoma. Stat3 activation in cancer has been associated with autocrine stimulatory loops and is believed to convey a growth advantage to cells. We now demonstrate ligand-independent activation of Stat3 by high cell density in multiple cancer cell lines. Activation of Stat3 is associated with antiproliferative rather than proliferative conditions. Interference with cdk2 activity upregulates Stat3 phosphorylation and Stat3-directed DNA-binding activity. Our data supports a model in which Stat3 activity is partially suppressed by cdk2 in growing cells and derepressed upon cell confluence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Akira S . (2000). Oncogene, 19, 2607–2611.

  • Berclaz G, Altermatt HJ, Rohrbach V, Siragusa A, Dreher E and Smith PD . (2001). Int. J. Oncol., 19, 1155–1160.

  • Bienvenu F, Gascan H and Coqueret O . (2001). J. Biol. Chem., 276, 16840–16847.

  • Bild AH, Turkson J and Jove R . 2002. EMBO J., 21, 3255–3263.

  • Bromberg J and Darnell Jr JE . (2000). Oncogene, 19, 2468–2473.

  • Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C and Darnell Jr JE . (1999). Cell, 98, 295–303.

  • Chapman RS, Lourenco P, Tonner E, Flint D, Selbert S, Takeda K, Akira S, Clarke AR and Watson CJ . (2000). Adv. Exp. Med. Biol., 480, 129–138.

  • Coqueret O and Gascan H . (2000). J. Biol. Chem., 275, 18794–18800.

  • de Koning JP, Soede-Bobok AA, Ward AC, Schelen AM, Antonissen C, van Leeuwen D, Lowenberg B and Touw IP . (2000). Oncogene, 19, 3290–3298.

  • Dimanche-Boitrel MT, Micheau O, Hammann A, Haugg M, Eymin B, Chauffert B and Solary E . (1998). Int. J. Cancer, 77, 796–802.

  • Endo S, Zeng Q, Burke NA, He Y, Melhem MF, Watkins SF, Lango MN, Drenning SD, Huang L and Rubin Grandis J . (2000). Gene Therapy, 7, 1906–1914.

  • Faruqi TR, Gomez D, Bustelo XR, Bar-Sagi D and Reich NC . (2001). Proc. Natl. Acad. Sci. USA, 98, 9014–9019.

  • Garrido C, Ottavi P, Fromentin A, Hammann A, Arrigo AP, Chauffert B and Mehlen P . (1997). Cancer Res., 57, 2661–2667.

  • Gaulin JF, Fiset A, Fortier S and Faure RL . (2000). J. Biol. Chem., 275, 16658–16665.

  • Giri D, Ozen M and Ittmann M . (2001). Am. J. Pathol., 159, 2159–2165.

  • Grandis JR, Drenning SD, Chakraborty A, Zhou MY, Zeng Q, Pitt AS and Tweardy DJ . (1998a). J. Clin. Invest., 102, 1385–1392.

  • Grandis JR, Drenning SD, Zeng Q, Watkins SC, Melhem MF, Endo S, Johnson DE, Huang L, He Y and Kim JD . (2000a). Proc. Natl. Acad. Sci. USA, 97, 4227–4232.

  • Grandis JR, Melhem MF, Gooding WE, Day R, Holst VA, Wagener MM, Drenning SD and Tweardy DJ . (1998b). J. Natl. Cancer Inst., 90, 824–832.

  • Grandis JR and Tweardy DJ . (1993). Cancer Res., 53, 3579–3584.

  • Hauser PJ, Agrawal D, Hackney J and Pledger WJ . (1998). Cell Growth Differ., 9, 847–855.

  • He Y, Zeng Q, Drenning SD, Melhem MF, Tweardy DJ, Huang L and Grandis JR . (1998). J. Natl. Cancer Inst., 90, 1080–1087.

  • Jove R . (2000). Oncogene, 19, 2466–2467.

  • Junicho A, Matsuda T, Yamamoto T, Kishi H, Korkmaz K, Saatcioglu F, Fuse H and Muraguchi A . (2000). Biochem. Biophys. Res. Commun., 278, 9–13.

  • Kijima T, Niwa H, Steinman RA, Drenning SD, Gooding WE, Wentzel AL, Xi S and Grandis JR . (2002). Cell Growth Differ., 13, 355–362.

  • Kitagawa M, Higashi H, Jung HK, Suzuki-Takahashi I, Ikeda M, Tamai K, Kato J, Segawa K, Yoshida E, Nishimura S and Taya Y . (1996). EMBO J., 15, 7060–7069.

  • Krebs DL and Hilton DJ . (2001). Stem Cells, 19, 378–387.

  • Li L and Shaw PE . (2002). J. Biol. Chem., 21, 21.

  • McLemore ML, Grewal S, Liu F, Archambault A, Poursine-Laurent J, Haug J and Link DC . (2001). Immunity, 14, 193–204.

  • Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA, Becker-Hapak M, Ezhevsky SA and Dowdy SF . (1998). Nat. Med., 4, 1449–1452.

  • Sehgal PB, Guo GG, Shah M, Kumar V and Patel K . (2002). J. Biol. Chem., 277, 12067–12074.

  • Shen Y, Devgan G, Darnell Jr JE and Bromberg JF . (2001). Proc. Natl. Acad. Sci. USA, 98, 1543–1548.

  • Simon AR, Vikis HG, Stewart S, Fanburg BL, Cochran BH and Guan KL . (2000). Science, 290, 144–147.

  • Sinibaldi D, Wharton W, Turkson J, Bowman T, Pledger WJ and Jove R . (2000). Oncogene, 19, 5419–5427.

  • Song JI and Grandis JR . (2000). Oncogene, 19, 2489–2495.

  • Steinman RA and Iro A . (1999). Leukemia, 13, 54–61.

  • Suzuki A, Hanada T, Mitsuyama K, Yoshida T, Kamizono S, Hoshino T, Kubo M, Yamashita A, Okabe M, Takeda K, Akira S, Matsumoto S, Toyonaga A, Sata M and Yoshimura A . (2001). J. Exp. Med., 193, 471–481.

  • Takeda K and Akira S . (2000). Cytokine Growth Factor Rev., 11, 199–207.

  • Wang S and Evers BM . (1999). J. Gastrointest. Surg., 3, 200–207.

  • Wooten DK, Xie X, Bartos D, Busche RA, Longmore GD and Watowich SS . (2000). J. Biol. Chem., 275, 26566–26575.

  • Xie B, Zhao J, Kitagawa M, Durbin J, Madri JA, Guan JL and Fu XY . (2001). J. Biol. Chem., 276, 19512–19523.

  • Yaroslavskiy BB, Stolz DB, Watkins SC, Alber SM, Bradbury NA and Steinman RA . (2001). Mol. Med., 7, 49–58.

  • Yasukawa H, Sasaki A and Yoshimura A . (2000). Annu. Rev. Immunol., 18, 143–164.

Download references

Acknowledgements

We thank John Marshall for ZRP cells, Ora Weiss, and Thomas Kleyman for MDCK cells, James James Johnston for 3T3-SOCS cells, Schlomo Melmed for a SOCS-luciferase construct, Peter Nissley for a GST-SOCS plasmid, Sarah Dunn and Martin Myers for a SOCS3-expression plasmid, Jacqueline Bromberg for a Stat3C expression plasmid, and Steven Dowdy for GFPTat and dominant-negative cdk2Tat plasmids. This work was supported in part by NIH Grants RolHL65172 (RAS), RO1CA77308 (JRG), and an UPCI pilot grant (RAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A Steinman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinman, R., Wentzel, A., Lu, Y. et al. Activation of Stat3 by cell confluence reveals negative regulation of Stat3 by cdk2. Oncogene 22, 3608–3615 (2003). https://doi.org/10.1038/sj.onc.1206523

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206523

Keywords

This article is cited by

Search

Quick links