Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Report
  • Published:

Tributyltin (TBT) induces ultra-rapid caspase activation independent of apoptosome formation in human platelets

Abstract

Activation of caspases has been demonstrated to be involved in thrombocytopenia and prolonged storage of platelet concentrates. Platelets represent enucleate cells that comprise all elements of the mitochondrial apoptosis pathway. However, no apoptotic stimuli capable of activating the endogenous caspase cascade have been identified so far. Using tributyltin (TBT) we could identify a compound that is capable of activating caspase-9 and -3 in platelets. Recent studies implicate that TBT induces apoptosis via the mitochondrial signaling pathway that is characterized by the formation of a high-molecular-weight complex (apoptosome) containing the adapter protein Apaf-1 and active caspase-9. Interestingly, addition of TBT induced the activation of caspase-9 in an ultra-rapid kinetic within the first 2 min. In addition, size exclusion chromatography revealed that TBT-mediated processing of caspase-9 occurs in the absence of the apoptosome. Thus, these data implicate that TBT induces the activation of caspase-9 by a mechanism not involving the formation of the apoptosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Aw TY, Nicotera P, Manzo L and Orrenius S . (1990). Arch. Biochem. Biophys., 283, 46–50.

  • Bantel H, Engels I, Voelter W, Schulze-Osthoff K and Wesselborg S . (1999). Cancer Res., 59, 2083–2090.

  • Belka C, Rudner J, Wesselborg S, Stepczynska A, Marini P, Lepple-Wienhues A, Faltin H, Bamberg M, Budach W and Schulze-Osthoff K . (2000). Oncogene, 19, 1181–1190.

  • Berg CP, Engels IH, Rothbart A, Lauber K, Renz A, Schlosser SF, Schulze-Osthoff K and Wesselborg S . (2001). Cell Death Differ., 8, 1197–1206.

  • Bratosin D, Estaquier J, Petit F, Arnoult D, Quatannens B, Tissier JP, Slomianny C, Sartiaux C, Alonso C, Huart JJ, Montreuil J and Ameisen JC . (2001). Cell Death Differ., 8, 1143–1156.

  • Cain K, Hyams RL and Griffiths DE . (1977). FEBS Lett., 82, 23–28.

  • Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S and Reed JC . (1998). Science, 282, 1318–1321.

  • Chow SC, Kass GE, McCabe Jr MJ and Orrenius S . (1992). Arch. Biochem. Biophys., 298, 143–149.

  • De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O, Kroemer G, Vainchenker W and Debili N . (2002). Blood, 100, 1310–1317.

  • Engels IH, Stepczynska A, Stroh C, Lauber K, Berg C, Schwenzer R, Wajant H, Jänicke RU, Porter AG, Belka C, Gregor M, Schulze-Osthoff K and Wesselborg S . (2000). Oncogene, 19, 4563–4573.

  • Ferrari D, Stepczynska A, Los M, Wesselborg S and Schulze-Osthoff K . (1998). J. Exp. Med., 188, 979–984.

  • Harris EL, Bangham JA and Zukovic B . (1973). FEBS Lett., 29, 339–344.

  • Jacobsen MD, Weil M and Raff MC . (1996). J. Cell Biol., 133, 1041–1051.

  • Lauber K, Appel HA, Schlosser SF, Gregor M, Schulze-Osthoff K and Wesselborg S . (2001). J. Biol. Chem., 276, 29772–29781.

  • Leist M and Jäättelä M . (2001). Cell Death Differ., 8, 324–326.

  • Li J, Xia Y, Bertino AM, Coburn JP and Kuter DJ . (2000). Blood, 40, 1320–1329.

  • Los M, Wesselborg S and Schulze-Osthoff K . (1999). Immunity, 10, 629–639.

  • Marsden VS, O’Connor L, O’Reilly LA, Silke J, Metcalf D, Ekert PG, Huang DC, Cecconi F, Kuida K, Tomaselli KJ, Roy S, Nicholson DW, Vaux DL, Bouillet P, Adams JM and Strasser A . (2002). Nature, 419, 634–637.

  • Nakagawa T, Hong Zhu H, Nobuhiro Morishima N, Li E, Xu J, Yankner BA and Junying Yuan J . (2000). Nature, 403, 98–103.

  • Nishikimi A, Kira Y, Kasahara E, Sato EF, Kanno T, Utsumi K and Inoue M . (2001). Biochem. J., 356, 621–626.

  • Nopp A, Lundahl J and Stridh H . (2002). Clin. Exp. Immunol., 128, 267–274.

  • Piguet PF, Kan CD and Vesin C . (2002). Apoptosis, 7, 91–98.

  • Plenchette S, Moutet M, Benguella M, N’Gondara JP, Guigner F, Coffe C, Corcos L, Bettaieb A and Solary E . (2001). Leukemia, 15, 1572–1581.

  • Powers MF and Beavis AD . (1991). J. Biol. Chem., 266, 17250–17256.

  • Raffray M and Cohen GM . (1993). Arch. Toxicol., 67, 231–236.

  • Rao RV, Castro-Obregon S, Frankowski H, Schuler M, Stoka V, del Rio G, Bredesen DE and Ellerby HM . (2002). J. Biol. Chem., 277, 21836–21842.

  • Robertson JD, Gogvadze V, Zhivotovsky B and Orrenius S . (2000). J. Biol. Chem., 275, 32438–32443.

  • Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S and Peter ME . (1998). Eur. J. Biochem., 254, 439–459.

  • Schulze-Osthoff K, Walczak H, Dröge W and Krammer PH . (1994). J. Cell Biol., 127, 15–20.

  • Seinen W, Vos JG, van Krieken R, Penninks A, Brands R and Hooykaas H . (1977). Toxicol. Appl. Pharmacol., 42, 213–224.

  • Shcherbina A and Remold O’Donnell E . (1999). Blood, 93, 4222–4231.

  • Snoeij NJ, Penninks AH and Seinen W . (1988). Int. J. Immunopharmacol., 10, 891–899.

  • Stepczynska A, Lauber K, Engels IH, Janssen O, Kabelitz D, Wesselborg S and Schulze-Osthoff K . (2001). Oncogene, 20, 1193–1202.

  • Stridh H, Fava E, Single B, Nicotera P, Orrenius S and Leist M . (1999a). Chem. Res. Toxicol., 12, 874–882.

  • Stridh H, Gigliotti D, Orrenius S and Cotgreave I . (1999b). Biochem. Biophys. Res. Commun., 266, 460–465.

  • Stridh H, Kimland M, Jones DP, Orrenius S and Hampton MB . (1998). FEBS Lett., 429, 351–355.

  • Vanags DM, Orrenius S and Aguilar Santelises M . (1997). Br. J. Haematol., 99, 824–831.

  • Vos JG, de Klerk A, Krajnc El, Kruizinga W, van Ommen B and Rozing J . (1984). Toxicol. Appl. Pharmacol., 75, 387–408.

  • Vos JG, De Klerk A, Krajnc EI, Van Loveren H and Rozing J . (1990). Toxicol. Appl. Pharmacol., 105, 144–155.

  • Wesselborg S, Engels IH, Rossmann E, Los M and Schulze-Osthoff K . (1999). Blood, 93, 3053–3063.

  • Wolf BB, Goldstein JC, Stennicke HR, Beere H, Amarante-Mendes GP, Salvesen GS and Green DR . (1999). Blood, 94, 1683–1692.

Download references

Acknowledgements

We thank Dr Y Lazebnik for providing mAb against caspase-9. This work was supported by grants from the Federal Ministry of Education, Science, Research and Technology (Fö. 01KS9602), and the Interdisciplinary Center of Clinical Research Tübingen (IZKF) and from the Deutsche Forschungsgemeinschaft (WE-1801/1). C Berg acknowledges a fellowship from the Fortune Program of the University of Tübingen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Wesselborg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, C., Rothbart, A., Lauber, K. et al. Tributyltin (TBT) induces ultra-rapid caspase activation independent of apoptosome formation in human platelets. Oncogene 22, 775–780 (2003). https://doi.org/10.1038/sj.onc.1206221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206221

Keywords

This article is cited by

Search

Quick links