Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

How DNA lesions are turned into mutations within cells?

Abstract

Genomes of all living organisms are constantly injured by endogenous and exogenous agents that modify the chemical integrity of DNA and in turn challenge its informational content. Despite the efficient action of numerous repair systems that remove lesions in DNA in an error-free manner, some lesions, that escape these repair mechanisms, are present when DNA is being replicated. Although replicative DNA polymerases are usually unable to copy past such lesions, it was recently discovered that cells are equipped with specialized DNA polymerases that will assist the replicative polymerase during the process of Translesion Synthesis (TLS). These TLS polymerases exhibit relaxed fidelity that allows them to copy past lesions in DNA with an inherent risk of generating mutations at high frequency. We present recent aspects related to the genetics and biochemistry of TLS and highlight some of the remaining hot topics of this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Baynton K, Bresson-Roy A, Fuchs RP . 1998 Mol. Cell. Biol. 18: 960–966

  • Becherel OJ, Fuchs RP . 2001 Proc. Natl. Acad. Sci. USA 98: 8566–8571

  • Becherel OJ, Fuchs RPP, Wagner J . 2002 DNA Repair 1: 703–708

  • Bresson A, Fuchs RP . 2002 EMBO J. 21: 3881–3887

  • Cordonnier AM, Fuchs RP . 1999 Mutat. Res. 435: 111–119

  • Cordonnier AM, Lehman AR, Fuchs RPP . 1999 Mol. Cell. Biol. 19: 2206–2211

  • Dalrymple BP, Kongsuwan K, Wijffels G, Dixon NE, Jennings PA . 2001 Proc. Natl. Acad. Sci. USA 98: 11627–11632

  • Fuchs RP, Koffel-Schwartz N, Pelet S, Janel-Bintz R, Napolitano R, Becherel OJ, Broschard TH, Burnouf DY, Wagner J . 2001 Biochem. Soc. Trans. 29: 191–195

  • Fuchs RPP, Schwartz N, Daune MP . 1981 Nature 294: 657–659

  • Haracska L, Johnson RE, Unk I, Phillips B, Hurwitz J, Prakash L, Prakash S . 2001a Mol. Cell. Biol. 21: 7199–7206

  • Haracska L, Johnson RE, Unk I, Phillips BB, Hurwitz J, Prakash L, Prakash S . 2001b Proc. Natl. Acad. Sci. USA 98: 14256–14261

  • Haracska L, Unk I, Johnson RE, Johansson E, Burgers PM, Prakash S, Prakash L . 2001c Genes Dev. 15: 945–954

  • Haracska L, Unk I, Johnson RE, Phillips BB, Hurwitz J, Prakash L, Prakash S . 2002 Mol. Cell. Biol. 22: 784–791

  • Hughes Jr AJ, Bryan SK, Chen H, Moses RE, McHenry CS . 1991 J. Biol. Chem. 266: 4568–4573

  • Johnson RE, Kondratick CM, Prakash S, Prakash L . 1999a Science 285: 263–265

  • Johnson RE, Prakash S, Prakash L . 1999b Science 283: 1001–1004

  • Kato T, Shinoura Y . 1977 Mol. Gen. Genet. 156: 121–131

  • Kim DR, McHenry CS . 1996 J. Biol. Chem. 271: 20699–20704

  • Koffel-Schwartz N, Coin F, Veaute X, Fuchs RPP . 1996 Proc. Natl. Acad. Sci. USA 93: 7805–7810

  • Larimer FW, Perry JR, Hardigree AA . 1989 J. Bacteriol. 171: 230–237

  • Lawrence CW . 2002 DNA Repair 1: 425–435

  • Lemontt JF . 1971 Mutat. Res. 13: 319–326

  • Lenne-Samuel N, Janel-Bintz R, Kolbanovskiy A, Geacintov NE, Fuchs RP . 2000 Mol. Microbiol. 38: 299–307

  • Lenne-Samuel N, Wagner J, Etienne H, Fuchs RPP . 2002 EMBO Reports 3: 45–49

  • Ling H, Boudsocq F, Woodgate R, Yang W . 2001 Cell 107: 91–102

  • Lopez de Saro FJ, O'Donnell M . 2001 Proc. Natl. Acad. Sci. USA 98: 8376–8380

  • Masutani C, Araki M, Yamada A, Kusumoto R, Nogimori T, Maekawa T, Iwai S, Hanaoka F . 1999a EMBO J. 18: 3491–3501

  • Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M, Araki M, Iwai S, Takio K, Hanaoka F . 1999b Nature 399: 700–704

  • Miller JH . 1983 Annu. Rev. Genet. 17: 215–238

  • Napolitano R, Janel-Bintz R, Wagner J, Fuchs RP . 2000 EMBO J. 19: 6259–6265

  • Nelson JR, Lawrence CW, Hinkle DC . 1996a Nature 382: 729–731

  • Nelson JR, Lawrence CW, Hinkle DC . 1996b Science 272: 1646–1649

  • Ohmori H, Friedberg EC, Fuchs RP, Goodman MF, Hanaoka F, Hinkle D, Kunkel TA, Lawrence CW, Livneh Z, Nohmi T, Prakash L, Prakash S, Todo T, Walker GC, Wang Z, Woodgate R . 2001 Mol. Cell 8: 7–8

  • Reuven NB, Arad G, Maor-Shoshani A, Livneh Z . 1999 J. Biol. Chem. 274: 31763–31766

  • Silvian LF, Toth EA, Pham P, Goodman MF, Ellenberger T . 2001 Nat. Struct. Biol. 8: 984–989

  • Steinborn G . 1978 Mol. Gen. Genet. 165: 87–93

  • Tang M, Pham P, Shen X, Taylor JS, O'Donnell M, Woodgate R, Goodman MF . 2000 Nature 404: 1014–1018

  • Tang M, Shen X, Frank EG, O'Donnell M, Woodgate R, Goodman MF . 1999 Proc. Natl. Acad. Sci. USA 96: 8919–8924

  • Trincao J, Johnson RE, Escalante CR, Prakash S, Prakash L, Aggarwal AK . 2001 Mol. Cell 8: 417–426

  • Wagner J, Etienne H, Janel-Bintz R, Fuchs RPP . 2002 DNA Repair 1: 159–167

  • Wagner J, Fujii S, Gruz P, Nohmi T, Fuchs RP . 2000 EMBO Rep. 1: 484–488

  • Wagner J, Gruz P, Kim S-R, Yamada M, Matsui K, Fuchs RPP, Nohmi T . 1999 Mol. Cell 4: 281–286

  • Zhou BL, Pata JD, Steitz TA . 2001 Mol. Cell 8: 427–437

Download references

Acknowledgements

We wish to thank Drs Anne Bresson and Dominique Burnouf for critical reading and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert PP Fuchs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagès, V., Fuchs, R. How DNA lesions are turned into mutations within cells?. Oncogene 21, 8957–8966 (2002). https://doi.org/10.1038/sj.onc.1206006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206006

Keywords

This article is cited by

Search

Quick links