Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Report
  • Published:

A new locus for resistance to γ-radiation-induced thymic lymphoma identified using inter-specific consomic and inter-specific recombinant congenic strains of mice

Abstract

Mice of the C57BL/6J inbred strain develop thymic lymphomas at very high frequency after acute γ-irradiation, while mice of several inbred strains derived from the wild progenitor of the Mus spretus species and their F1 hybrids with C57BL/6J appear extremely resistant. Analysis of the genetic determinism of the γ-radiation-induced thymic lymphoma (RITL) resistance with the help of inter-specific consomic strains (ICS), which carry a single introgressed Mus spretus chromosome on a C57BL/6J genetic background, provide significant evidence for the existence of a thymic lymphoma resistance (Tlyr1) locus on chromosome 19. The subsequent analysis of the backcross progeny resulting from a cross between consomic mice heterozygous for the Mus spretus chromosome 19 and C57BL/6J mice, together with the study of inter-specific recombinant congenic strains (IRCS), suggest that this Tlyr1 locus maps within the D19Mit60D19Mit40 chromosome interval. In addition to the discovery of a new locus controlling RITL development, our study emphasizes the value of ICS and IRCS for the genetic analysis of cancer predisposition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Angel JM, Richie ER . 2002 Mol. Carcinog. 33: 105–112

  • Angel JM, Morizot DC, Richie ER . 1993 Mol. Carcinog. 7: 151–156

  • Balmain A, Nagase H . 1998 Trends Genet. 14: 139–144

  • Bonhomme F, Guénet J-L . 1996 The laboratory mouse and its wild relatives: Genetic Variants and Strains of the Laboratory Mouse. Lyon MF, Rastan S and Brown SDM (ed) Oxford: Oxford University Press pp 1577–1596

    Google Scholar 

  • Lander E, Kruglyak L . 1995 Nature Genet. 11: 241–247

  • Manenti G, Gariboldi M, Elango R, Fiorino AM, De Gregorio L, Falvella SF, Hunter K, Housman D, Pierotti MA, Dragani TA . 1996 Nature Genet. 12: 455–457

  • Matin A, Collin GB, Asada Y, Varnum D, Nadeau JH . 1999 Nature Genet. 23: 237–240

  • Mori N, Okumoto M, Yamate J . 2000 J. Radiat. Res. 41: 367–372

  • Nagase H, Bryson S, Cordell H, Kemp CJ, Fee F, Balmain A . 1995 Nature Genet. 10: 424–429

  • Nagase H, Mao J-H, Balmain A . 1999 Proc. Natl. Acad. Sci. USA 96: 15032–15037

  • Newcomb EW, Steinberg JJ, Pellicer A . 1988 Cancer Res. 48: 5514–5521

  • Okumoto S, Nishikawa R, Imai S, Hilgers J . 1989 J. Radiat. Res. 30: 135–139

  • Okumoto S, Nishikawa R, Imai S, Hilgers J . 1990 Cancer Res. 50: 3848–3850

  • Podsypanina K, Hedrick-Ellenson L, Nemes A, Gu J, Tamura M, Yamada KM, Cordón-Cardo C, Catoretti G, Fisher P . 1999 Proc. Natl. Acad. Sci. USA 96: 1563–1568

  • Richie ER, Nairn RS, Becker FF . 1985 Cancer Res. 45: 2802–2806

  • Saito Y, Ochiai Y, Kodama Y, Tamura Y, Togashi T, Kosugi-Okano H, Miyazawa T, Wakabayashi Y, Hatakeyama K, Wakana S, Niwa O, Kominami R . 2001 Oncogene 20: 5243–5247

  • Santos J, Herranz M, Fernández M, Vaquero C, López P, Fernández-Piqueras J . 2001 Oncogene 20: 2186–2189

  • Shibahara K, Asano M, Ishida Y, Aoki T, Koike T, Honjo T . 1995 Gene 166: 297–301

  • Szymanska H, Sitarz M, Krysiak E, Piskorowska J, Czarnomska A, Skurzak H, Hart AA, de Jong D, Demant P . 1999 Int. J. Cancer 83: 674–678

  • Suzuki A, De la Pompa JL, Stambolic V, Elia AJ, Sasaki T, Del Barco-Barrantes I, Ho A, Wakeham A, Itie A, Khoo W, Fukumoto M, Mak TW . 1998 Curr. Biol. 8: 1169–1178

  • Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S . 1992 Nature 356: 314–317

  • Wielowieyski A, Brennan LA, Jongstra J . 1999 Mamm. Genome 10: 623–627

  • Yamada Y, Shisa H, Matsushiro H, Kamoto T, Kobayashi Y, Kawarai A, Hiai H . 1994 J. Exp. Med. 180: 2155–2162

  • Yang HS, Jansen AP, Nair R, Shibahara K, Verma AK, Cmarik JL, Colburn NH . 2001 Oncogene 20: 669–676

  • Zhang SL, DuBois W, Ramsay ES, Bliskovski V, Morse III HC, Taddesse-Heath L, Vass WC, DePinho RA, Mock BA . 2001 Mol. Cell. Biol. 21: 310–318

Download references

Acknowledgements

We thank Javier Palacín and Fátima Plasencia for their technical help. This work was supported by grants from the European Commission within the Biomedicine and Health programme (no BMH4-98-3426) to J Santos, J-L Guénet and E Salido, the Ministerio de Ciencia y Tecnología from Spain (no PM99-0003) and Comunidad de Madrid (no 08.1/0013.1/2000) to J Fernández-Piqueras, and the Comunidad de Madrid (no 08.1/0020.2/2000) to J Santos, and by a grant from the Association pour la Recherche sur le Cancer (ARC) to J-L Guénet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, J., Montagutelli, X., Acevedo, A. et al. A new locus for resistance to γ-radiation-induced thymic lymphoma identified using inter-specific consomic and inter-specific recombinant congenic strains of mice. Oncogene 21, 6680–6683 (2002). https://doi.org/10.1038/sj.onc.1205846

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205846

Keywords

This article is cited by

Search

Quick links