Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Report
  • Published:

TGFβ inducible early gene enhances TGFβ/Smad-dependent transcriptional responses

Abstract

TGFβ inducible early gene (TIEG) encodes a three zinc-finger Krüppel-like transcription factor whose overexpression has been shown to mimic the effects of TGFβ in human osteosarcoma and pancreatic carcinoma cells. In order to investigate a potential role of TIEG in the TGFβ signal transduction pathway, we studied its impact on a Smad binding element (SBE) reporter which is known to be regulated by TGFβ through the R-Smad proteins. We demonstrate that TIEG overexpression enhances TGFβ induction of SBE reporter activity. TIEG overexpression also enhances induction of the endogenous TGFβ regulated genes p21 and PAI-1. The ability of TIEG to enhance TGFβ actions is Smad dependent since TIEG has no effect on SBE transcription in the absence of Smad4 expression or when an inhibitory Smad protein, Smad7, is overexpressed. Furthermore, TIEG overexpression enhances TGFβ induced Smad2 phosphorylation. Lastly, TIEG appears to function by binding to and thereby repressing a specific element in the proximal promoter of the inhibitory Smad7 gene. In conclusion, these results describe a novel mechanism for the potentiation of TGFβ/Smad signaling via repression of the inhibitory Smad7 gene by TIEG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Afrakhte M, Moren A, Jossen S, Itoh S, Sampath K, Westermark B, Heldin CH, Heldin NE, ten Dijke P . 1998 Biochem. Biophys. Res. Commun. 249: 505–511

  • Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL . 2000 J. Biol. Chem. 275: 36803–36810

  • Blok LJ, Grossman ME, Perry JE, Tindall DJ . 1995 Mol. Endocrinol. 9: 1610–1620

  • Boyer PL, Colmenares C, Stavnezer E, Hughes SH . 1993 Oncogene 8: 457–466

  • Chalaux E, Lopez-Rovira T, Rosa JL, Pons G, Boxer LM, Bartrons R, Ventura F . 1999 FEBS Lett. 457: 478–482

  • Colmenares C, Stavnezer E . 1989 Cell 59: 293–303

  • Cook T, Gebelein B, Belal M, Mesa K, Urrutia R . 1999 J. Biol. Chem. 274: 29500–29504

  • de Winter JP, Roelen BA, ten Dijke P, van der Burg B, van den Eijnden-van Raaij AL . 1997 Oncogene 14: 1891–1899

  • Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM . 1998 EMBO J. 17: 3091–3100

  • Derynck R, Feng XH . 1997 Biochim. Biophys. Acta 1333: F105–F150

  • Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K . 2001 J. Biol. Chem. 276: 12477–12480

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . 2001 Nature 411: 494–498

  • Fautsch MP, Vrabel A, Rickard D, Subramaniam M, Spelsberg TC, Wieben ED . 1998a Mamm. Genome 9: 838–842

  • Fautsch MP, Vrabel A, Subramaniam M, Hefferen TE, Spelsberg TC, Wieben ED . 1998b Geonomics 51: 408–416

  • Frey RS, Mulder KM . 1997 Cancer Res. 57: 628–633

  • Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE . 1996 Science 271: 350–353

  • Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E . 1999 J. Biol. Chem. 274: 27161–27167

  • Hartsough MT, Mulder KM . 1995 J. Biol. Chem. 270: 7117–7124

  • Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone Jr MA, Wrana JL, Falb D . 1997 Cell 89: 1165–1173

  • Hefferan TE, Reinholz GG, Rickard DJ, Johnsen SA, Waters KM, Subramaniam M, Spelsberg TC . 2000 J. Biol. Chem. 275: 20255–20259

  • Hocevar BA, Brown TL, Howe PH . 1999 EMBO J. 18: 1345–1356

  • Imai K, Takeshita A, Hanazawa S . 1999 FEBS Lett. 456: 375–378

  • Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K . 1997 Nature 389: 622–626

  • Itoh F, Asao H, Sugamura K, Heldin CH, ten Dijke P, Itoh S . 2001 EMBO J. 20: 4132–4142

  • Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL . 2000 Mol. Cell 6: 1365–1375

  • Kim SK, Fan Y, Papadimitrakopoulou V, Clayman G, Hittelman WN, Hong WK, Lotan R, Mao L . 1996 Cancer Res. 56: 2519–2521

  • Kleeff J, Ishiwata T, Maruyama H, Friess H, Truong P, Buchler MW, Falb D, Korc M . 1999a Oncogene 18: 5363–5372

  • Kleeff J, Maruyama H, Friess H, Buchler MW, Falb D, Korc M . 1999b Biochem. Biophys. Res. Commun. 255: 268–273

  • Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S, Zhou Q . 1999 Genes Dev. 13: 2196–2206

  • Miyazono K . 2000 Cytokine Growth Factor Rev. 11: 15–22

  • Monteleone G, Kumberova A, Croft NM, McKenzie C, Steer HW, MacDonald TT . 2001 J. Clin. Invest. 108: 601–609

  • Moustakas A, Kardassis D . 1998 Proc. Natl. Acad. Sci. USA 95: 6733–6738

  • Nagarajan RP, Zhang J, Li W, Chen Y . 1999 J. Biol. Chem. 274: 33412–33418

  • Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P . 1997 Nature 389: 631–635

  • Ribeiro A, Bronk SF, Roberts PJ, Urrutia R, Gores GJ . 1999 Hepatology 30: 1490–1497

  • Sano Y, Harada J, Tashiro S, Gotoh-Mandeville R, Maekawa T, Ishii S . 1999 J. Biol. Chem. 274: 8949–8957

  • Schutte M, Hruban RH, Hedrick L, Cho KR, Nadasdy GM, Weinstein CL, Bova GS, Isaacs WB, Cairns P, Nawroz H, Sidransky D, Casero RA, Meltzer PS, Hahn SA, Kern SE . 1996 Cancer Res. 56: 2527–2530

  • Stroschein SL, Wang W, Zhou S, Zhou Q, Luo K . 1999 Science 286: 771–774

  • Subramaniam M, Harris SA, Oursler MJ, Rasmussen K, Riggs BL, Spelsberg TC . 1995 Nucleic Acids Res. 23: 4907–4912

  • Subramaniam M, Hefferan TE, Tau K, Peus D, Pittelkow M, Jalal S, Riggs BL, Roche P, Spelsberg TC . 1998 J. Cell. Biochem. 68: 226–236

  • Tachibana I, Imoto M, Adjei PN, Gores GJ, Subramaniam M, Spelsberg TC, Urrutia R . 1997 J. Clin. Invest. 99: 2365–2374

  • Takagi Y, Kohmura H, Futamura M, Kida H, Tanemura H, Shimokawa K, Saji S . 1996 Gastroenterology 111: 1369–1372

  • ten Dijke P, Miyazono K, Heldin CH . 2000 Trends Biochem. Sci. 25: 64–70

  • Wieser R, Wrana JL, Massague J . 1995 EMBO J. 14: 2199–2208

  • Yajima S, Lammers CH, Lee SH, Hara Y, Mizuno K, Mouradian MM . 1997 J. Neurosci. 17: 8657–8666

  • Zhang L, Spratt SK, Liu Q, Johnstone B, Qi H, Raschke EE, Jamieson AC, Rebar EJ, Wolffe AP, Case CC . 2000 J. Biol. Chem. 275: 33850–33860

Download references

Acknowledgements

We thank the following for graciously providing plasmids: Dr M Kato and K Miyazono (ALK5TD expression construct), P ten Dijke (mSmad7 expression construct), E Böttinger (human Smad7 promoter), Y Chen (mouse Smad7 promoter), and A Rustgi (cyclin D1 promoter). We would like to thank K Rasmussen and T Ruesink for their outstanding technical support. SA Johnsen was supported by a predoctoral fellowship from the Mayo Foundation. R Janknecht was supported by a scholarship from the Sidney Kimmel Foundation for Cancer Research. This work was supported by the NIH grant 1RO1 DE14036-01A1, the Mayo Foundation, and the Mazza Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C Spelsberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnsen, S., Subramaniam, M., Janknecht, R. et al. TGFβ inducible early gene enhances TGFβ/Smad-dependent transcriptional responses. Oncogene 21, 5783–5790 (2002). https://doi.org/10.1038/sj.onc.1205681

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205681

Keywords

This article is cited by

Search

Quick links