Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Ribozyme-targeting of a secreted FGF-binding protein (FGF-BP) inhibits proliferation of prostate cancer cells in vitro and in vivo

Abstract

Prostate cancer is one of the most common malignant tumors with increasing incidence rates in the aging male. Since locally advanced or metastatic prostate tumors are essentially incurable, identification of new target molecules and treatment strategies is of critical importance. Fibroblast growth factor-2 (FGF-2) acts as potent mitogen which is upregulated in prostate cancers modulating cancer cell proliferation and development of an invasive phenotype. Normally it is tightly bound to the extracellular matrix that quenches its biological activity. The FGF-binding proteins (FGF-BP, HBp17) is a secreted protein which is able to mobilize and activate FGF-2 from the extracellular matrix. Here we show that FGF-BP is highly expressed in prostate tumor cells. To study the functional role of FGF-BP, we use a ribozyme-targeting approach to selectively deplete FGF-BP in prostate cancer cells achieving a more than 50% reduction of FGF-BP mRNA and protein levels in two mass-transfected cell lines. FGF-BP depletion reduces proliferation of the cells in vitro without changes in cell cycle distribution or apoptosis. Using cDNA microarrays, Northern blotting and RT–PCR, we show a complex pattern of changes in the gene expression profiles upon FGF-BP depletion. Most strikingly, ribozyme-mediated reduction of FGF-BP levels completely abolishes the ability of the highly metastatic PC-3 prostate carcinoma cells to grow tumors in an athymic nude mouse in vivo model which is far beyond the effects of FGF-BP ribozyme targeting observed previously in cells from other tumors in the same model. Taken together, our study identifies FGF-BP as a potential rate-limiting factor for prostate cancer growth and, due to its restricted expression pattern in adults, a potentially attractive target for prostate cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

ECM:

extracellular matrix

EGF:

epithelial growth factor

ELISA:

enzyme-linked immunosorbent assay

ERBIN:

HER-2 interacting protein

FACS:

fluorescence-activated cell sorting

FCS:

fetal calf serum

FGF:

fibroblast growth factor

FGF-BP:

fibroblast growth factor-binding protein

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

GST:

glutathione S-transferase

HRP:

horseradish peroxidase

IL-8:

interleukin-8

PLAB:

placental bone morphogenetic protein

Rz:

ribozyme

SCC:

squamous cell carcinoma

TPA:

12-O-tetradecanoylphorbol-13-acetate

UCHL-1/PGP 9.5:

ubiquitin carboxy-terminal esterase

References

  • Aigner A, Butscheid M, Kunkel P, Krause E, Lamszus K, Wellstein A, Czubayko F . 2001 Int. J. Cancer 92: 510–517

  • Aigner A, Hsieh SS, Malerczyk C, Czubayko F . 2000a Toxiology 144: 221–228

  • Aigner A, Malerczyk C, Houghtling R, Wellstein A . 2000b Growth Factors 18: 51–62

  • Aigner A, Ray PE, Czubayko F, Wellstein A . 2002 Histochem. Cell Biol. 117: 1–11

  • Aumuller G, Renneberg H, Leonhardt M, Lilja H, Abrahamsson PA . 1999 Prostate 38: 261–267

  • Begun FP, Story MT, Hopp KA, Shapiro E, Lawson RK . 1995 J. Urol. 153: 839–843

  • Bokhoven van A, Varella-Garcia M, Korch C, Hessels D, Miller GJ . 2001 The Prostate 47: 36–51

  • Borg JP, Marchetto S, Le Bivic A, Ollendorff V, Jaulin-Bastard F, Saito H, Fournier E, Adelaide J, Margolis B, Birnbaum D . 2000 Nat. Cell. Biol. 2: 407–414

  • Chackal-Roy M, Niemeyer C, Moore M, Zetter BR . 1989 J. Clin. Invest. 84: 43–50

  • Chandler LA, Sosnowski BA, Greenlees L, Aukerman SL, Baird A, Pierce GF . 1999 Int. J. Cancer 81: 451–458

  • Czubayko F, Liaudet-Coopman EDE, Aigner A, Tuveson AT, Berchem G, Wellstein A . 1997 Nat. Med. 3: 1137–1140

  • Czubayko F, Smith RV, Chung HC, Wellstein A . 1994 J. Biol. Chem. 269: 28243–28248

  • Darzynkiewicz Z, Bruno S, Del Bino G, Gorczyca W, Hotz MA, Lassota P, Traganos F . 1992 Cytometry 13: 795–808

  • Dow JK, deVere White RW . 2000 Urology 55: 800–806

  • Dow JK, Thompson ID, Chaudhuri G . 1997 J. Urol. 157: 221 (abstract)

  • Giri D, Ropiquet F, Ittmann M . 1999a Clin. Cancer Res. 5: 1063–1071

  • Giri D, Ropiquet F, Ittmann M . 1999b J. Cell. Physiol. 180: 53–60

  • Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G . 1987 Endocr. Rev. 8: 95–114

  • Harris VK, Kagan BL, Ray R, Coticchia CM, Liaudet-Coopman ED, Wellstein A, Riegel AT . 2001 Oncogene 20: 1730–1738

  • Harris VK, Liaudet-Coopman EDE, Boyle BJ, Wellstein A, Riegel AT . 1998 J. Biol. Chem. 273: 19130–19139

  • Inoue K, Slaton JW, Eve BY, Kim SJ, Perrotte P, Balbay MD, Yano S, Bar-Eli M, Radinsky R, Pettaway CA, Dinney CP . 2000 Clin. Cancer Res. 6: 2104–2119

  • Ittman M, Mansukhani A . 1997 J. Urol. 157: 351–356

  • Kim SJ, Uehara H, Karashima T, McCarty M, Shih N, Fidler IJ . 2001 Neoplasia 3: 33–42

  • Kurtz A, Wang HL, Darwiche N, Harris V, Wellstein A . 1997 Oncogene 14: 2671–2681

  • La Rocca RV, Danesi R, Cooper MR, Jamis-Dow CA, Ewing MW, Linehan WM, Myers CE . 1991 J. Urol. 145: 393–398

  • Lametsch R, Rasmussen JT, Johnsen LB, Purup S, Sejrsen K, Petersen TE, Heegaard CW . 2000 J. Biol. Chem. 275: 19469–19474

  • Leung HY, Dickson C, Robson CN, Neal DE . 1996 Oncogene 12: 1833–1835

  • Liaudet-Coopman EDE, Berchem GJ, Wellstein A . 1997 Clin. Cancer Res. 3: 179–184

  • Liaudet-Coopman EDE, Schulte AM, Cardillo M, Wellstein A . 1996 Biochem. Biophys. Res. Commun. 229: 930–937

  • Liaudet-Coopman EDE, Wellstein A . 1996 J. Biol. Chem. 271: 21303–21308

  • Lieberman R, Nelson WG, Sakr WA, Meyskens Jr FL, Wilding G, Partin AW, Lee JJ, Lippman SM . 2001 Urology 57: 4–27

  • Martin R, Fraile B, Peinado F, Arenas MI, Elices M, Alonso L, Paniagua R, Martin JJ, Santamaria L . 2000 J. Histochem. Cytochem. 48: 1121–1130

  • Mehta PB, Robson CN, Neal DE, Leung HY . 2000 J. Urol. 164: 2151–2155

  • Middleman MN, Lush RM, Sartor O, Reed E, Figg WD . 1996 Cancer Treat. Rev. 22: 105–118

  • Mori H, Maki M, Oishi K, Jaye M, Igarashi K, Yoshida O, Hatanaka M . 1990 Prostate 16: 71–80

  • Nakamoto T, Chang CS, Li AK, Chodak GW . 1992 Cancer Res. 52: 571–577

  • Nishi N, Matuo Y, Kunitomi K, Takenaka I, Usami M, Kotake T, Wada F . 1988 Prostate 13: 39–48

  • Okamoto T, Tanaka Y, Kan M, Sakamoto A, Takada K, Sato JD . 1996 In Vitro Cell Dev. Biol. Anim. 32: 69–71

  • Ozen M, Giri D, Ropiquet F, Masukhani A, Ittmann M . 2001 J. Natl. Cancer Inst. 93: 1783–1790

  • Ropiquet F, Giri D, Kwabi-Addo B, Mansukhani A, Ittmann M . 2000 Cancer Res. 60: 4245–4250

  • Ropiquet F, Giri D, Lamb DJ, Ittmann M . 1999 J. Urol. 162: 595–599

  • Shain SA, Saric T, Ke LD, Nannen D, Yoas S . 1996 Cell Growth Differ. 7: 573–586

  • Stöppler H, Malerczyk C, Block K, Aigner A, Czubayko F . 2001 Oncogene 20: 7430–7436

  • Story MT, Livingston B, Baeten L, Swartz SJ, Jacobs SC, Begun FP, Lawson RK . 1989 Prostate 15: 355–365

  • Thomas R, True LD, Lange PH, Vessella RL . 2001 Int. J. Cancer 93: 47–52

  • Webber MM, Bello D, Quader S . 1997 The Prostate 30: 58–64

  • Wellstein A, Czubayko F . 1996 Breast Cancer Res. Treat. 38: 109–119

  • Wellstein A, Lupu R, Zugmaier G, Flamm SL, Cheville AL, Delli Bovi P, Basilico c, Lippman ME, Kern FG . 1990 Cell Growth Differ. 1: 63–71

  • Wu D, Kan M, Sato GH, Okamoto T, Sato JD . 1991 J. Biol. Chem. 266: 16778–16785

  • Yagoda A, Petrylak D . 1993 Cancer 71: 1098–1109

  • Yan G, Fukabori Y, McBride G, Nikolaropolous S, McKeehan WL . 1993 Mol. Cell. Biol. 13: 4513–4522

Download references

Acknowledgements

We are grateful to Andrea Wüstenhagen, Barbara Siegel, Helga Radler and Daniela Wagner for expert technical assistance, to Kirsten Frank for skilful handling of the animals and to Mary-Lou Zuzarte for expert help with cell cycle analysis. This work was supported by grants from the A und E Kulemann-Stiftung and by the Forschungspool of the Philipps-University to A Aigner, and the Deutsche Akademie der Naturforscher Leopoldina (fellowship grant to H Renneberg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Aigner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aigner, A., Renneberg, H., Bojunga, J. et al. Ribozyme-targeting of a secreted FGF-binding protein (FGF-BP) inhibits proliferation of prostate cancer cells in vitro and in vivo. Oncogene 21, 5733–5742 (2002). https://doi.org/10.1038/sj.onc.1205560

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205560

Keywords

This article is cited by

Search

Quick links