Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Expression and transactivating functions of the bZIP transcription factor GADD153 in mammary epithelial cells

Abstract

Heregulin-β1 (HRG), a combinatorial ligand for human epidermal growth factor receptor 3 (HER3) and HER4, is a regulatory polypeptide having distinct biological effects, such as growth stimulation, differentiation, invasiveness, and migration in mammary epithelial cells. The mechanism underlying the diverse functions of HRG is not well established but is believed to depend on induced changes in the expression of specific cellular gene products, their modification, or both. Here, we identified the basic leucine zipper transcription factor, the growth-arrest and DNA-damage 153 (GADD153)/CCAAT-enhancer binding protein (C/EBP) homologous protein (CHOP) as one of the HRG-inducible genes. We demonstrated that HRG stimulation of mammary epithelial cells induces the expression of GADD153 mRNA and protein and transcription of GADD153 promoter. The transcriptional activity of the GADD153 promoter as well as transcription from the C/EBP-activating transcription factor (ATF) composite motif in the GADD153 promoter was also stimulated by HRG-inducible ATF-4 and activated HER2 but not wild-type HER2. GADD153 expression was upregulated by the lactogenic hormones insulin and progesterone and associated with differentiation of normal mammary epithelial cells. Consistent with its role as transcriptional modifier, GADD153 stimulated transcription of β-casein promoter activity in a STAT5a-sensitive manner in mammary epithelial cells. Analysis of mouse mammary gland development revealed that GADD153 expression was predominantly restricted in the early lactating stages. Because cyclic AMP responsive element and ATF binding sites are present in a variety of growth-regulating cellular genes, these findings suggest that stimulation of GADD153 expression and its transactivating functions may constitute an important mechanism of regulation of putative genes having diverse functions during cell growth and differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

HRG:

heregulin-β1

HER:

Human EGF Receptor

HCT:

anti-HER2 antibody herceptin

RT–PCR:

reverse transcriptase polymerase chain reaction

ATF:

activating transcription factor

bZIP:

basic leucine zipper

CRE:

cAMP response element

CREB:

CRE-binding protein

CBP:

CREB-binding protein

GADD:

growth arrest and DNA damage-inducible protein

Dex:

dexamethasone

C/EBP:

CCAAT -enhancer -binding protein

CHOP:

C/EBP homologous protein

NBT:

nitro blue tetrazolium

BCIP:

5-bromo-4-chloro-3-indolyl phosphate

References

  • Adam L, Vadlamudi RK, Kondapaka S, Chernoff J, Mendelsohn J, Kumar R . 1998 J. Biol. Chem. 273: 28238–28246

  • Ariyoshi K, Nosaka T, Yamada K, Onishi M, Oka Y, Miyajima A, Kitamura T . 2000 J. Biol. Chem. 275: 24407–24413

  • Batchvarona N, Wang X-Y, Ron D . 1995 EMBO J. 14: 4654–4661

  • Barone MV, Crozat A, Tabae A, Philipson L, Ron D . 1994 Genes Dev. 8: 453–464

  • Burden S, Yarden Y . 1997 Neuron 18: 847–855

  • Carraway K, Cantley L . 1994 Cell 78: 5–8

  • Cao Z, Umek RM, McKnight SL . 1991 Genes Dev. 5: 1538–1552

  • Chen BP, Wolfgang CD, Hai T . 1996 Mol. Cell. Biol. 16: 1157–1168

  • Coutts M, Cui K, Davis KL, Keutzer JC, Sytkowski AJ . 1999 Blood 93: 3369–3378

  • Crozat A, Aman P, Mandahl N, Ron D . 1993 Nature 363: 640–644

  • Cui K, Coutts M, Stahl J, Sytkowski AJ . 2000 J. Biol. Chem. 275: 7591–7596

  • Fawcett TW, Eastman HB, Martindale JL, Holbrook NJ . 1996 J. Biol. Chem. 271: 14285–14289

  • Fawcett TW, Martindale JL, Guyton KZ, Hai T, Holbrook NJ . 1999 Biochem. J. 339: 135–141

  • Fitzpatrick VD, Pisacane PI, Vandlen RL, Sliwkowski MX . 1998 FEBS Lett. 431: 102–106

  • Fornace Jr AJ, Nebert DW, Hollander MC, Luethy JD, Papathanasiou M, Fargnoli J, Holbrook NJ . 1989 Mol. Cell. Biol. 9: 4196–4203

  • Goodrich JA, Cutler G, Tjian R . 1996 Cell 84: 825–830

  • Hennighausen L, Robinson GW . 1998 Genes Dev. 12: 449–455

  • Huang Q, Lau SS, Monks TJ . 1999 Biochem. J. 341: 225–231

  • Hynes NC, Stern DF . 1994 Biochim. Biophys. Acta. 1198: 165–184

  • Janknecht R, Hunter T . 1996 Curr. Biol. 6: 951–954

  • Jones FE, Joseph Jerry D, Guarino BC, Andrews GC, Stern DF . 1996 Cell Growth Diff. 7: 1031–1038

  • Kazansky AV, Kabotyanski EB, Wyszomierski SL, Mancini MA, Rosen JM . 1999 J. Biol. Chem. 274: 22484–22492

  • Krane IM, Leder P . 1996 Oncogene 12: 1781–1788

  • Kumar R, Mandal M, Lipton A, Harvey H, Thompson CB . 1996 Clin. Can. Res. 2: 1215–1219

  • Marte BM, Jeschke M, Graus-Porta D, Hofer P, Groner B, Yarden Y, Hynes NE . 1995 Mol. Endocrinol. 9: 14–23

  • Matsumoto M, Minami M, Takeda K, Sakao Y, Akira S . 1996 FEBS Lett. 395: 143–147

  • MacLachlan TK, Somasundaram K, Sgagias M, Shifman Y, Muschel RJ, Cowen KH, El-Deiry WS . 2000 J. Biol. Chem. 275: 2777–2785

  • Mandal M, Vadlamudi R, Nguyen D, Wang R, Costa L, Bagheri-Yarmand R, Mendelsohn J, Kumar R . 2001 J. Biol. Chem. 276: 9699–9704

  • Mazumdar A, Wang RW, Mishra SK, Adam L, Yarmand RB, Mandal M, Vadlamudi R, Kumar R . 2001 Nature Cell Biol. 3: 30–37

  • Park JS, Luethy JD, Wang MG, Fargnoli J, Fornace Jr AJ, McBride OW, Holbrook NJ . 1992 Gene 116: 259–267

  • Peles E, Bacus SS, Koski RA, Lu HS, Wen D, Ogden SG, Levy RB, Yarden Y . 1992 Cell 69: 205–216

  • Reese DM, Slamon DJ . 1997 Stem Cells 15: 1–8

  • Ron D, Habener JF . 1992 Genes Dev. 6: 439–453

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . 1987 Science 235: 77–82

  • Talukder AH, Mandal M, Vadlamudi RV, Mendelsohn J, Kumar R . 2001 J. Biol. Chem. 276: 5636–5642

  • Talukder AH, Vadlamudi R, Mandal M, Kumar R . 2000 Cancer Res. 60: 276–281

  • Ubeda M, Wang XZ, Zinszner H, Wu HI, Habener JF, Ron D . 1996 Mol. Cell. Biol. 16: 1479–1489

  • Vadlamudi R, Mandal M, Adam L, Bandyopadhyay D, Steinbach G, Mendelsohn J, Kumar R . 1999 Oncogene 18: 305–314

  • Vadlamudi R, Wang R, Talukder AH, Adam L, Johnson R, Kumar R . 2000 Mol. Cell. Biol. 20: 9092–9101

  • Verrijzer CP, Tjian R . 1996 Trends Biochem. Sci. 21: 338–342

  • Vinson CR, Hai T, Boyd SM . 1993 Genes Dev. 7: 1047–1058

  • Wolfgang CD, Chen BPC, Martindale JL, Holbrook NJ, Hai T . 1997 Mol. Cell. Biol. 17: 6700–6707

  • Xie Y, Pendergast AM, Hung MC . 1995 J. Biol. Chem. 270: 30717–30724

  • Yang Y, Spitzer E, Meyer D, Sachs M, Neimann C, Hartmann G, Weidner KM, Birchmeier C, Birchmeier W . 1995 J. Cell. Biol. 131: 215–226

  • Zhan Q, Lord KA, Alamo I, Hollander CM, Carrier F, Ron D, Kohn KW, Hoffman B, Liebermann DA, Fornace Jr AJ . 1994 Mol. Cell. Biol. 14: 2361–2371

  • Zinszer H, Kuroda M, Wang X, Batchvarova N, Lightfoot R, Remotti H, Stevens J, Ron D . 1998 Genes Dev. 12: 982–995

Download references

Acknowledgements

This study was supported in part by NIH grants CA80066 and CA65746, and Bristol Mayer Research Program Grant (R Kumar). We are grateful to Nikki J Holbrook for GADD153-CAT and GADD153-luci, Jeffrey Rosen for β-Casein-Luci and STAT5a constructs, David Stern for the HER2 constructs, Toshio Kitamura for STAT5 constructs, Joel F Habener for ATF4 cDNA, Shizuo Akira for ATF4, Mien Chie Hung for NIH3T3/HER2NT cells, and Genetal for Hesceptin. We thank Daniel Medina for the HC11 cells, Ratna Vadlamudi for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talukder, A., Wang, RA. & Kumar, R. Expression and transactivating functions of the bZIP transcription factor GADD153 in mammary epithelial cells. Oncogene 21, 4289–4300 (2002). https://doi.org/10.1038/sj.onc.1205529

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205529

Keywords

This article is cited by

Search

Quick links