Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Ras-inducible immortalized fibroblasts: focus formation without cell cycle deregulation

Abstract

The Ras oncogene transforms cultured murine fibroblasts into malignant, focus-forming cells, whose lack of contact inhibition is evidenced by high saturation densities. In order to investigate the reversibility of Ras transformation, as well as the kinetics of Ras-induced changes, cell lines that conditionally express oncogenic Ras were constructed. Both focus formation and increased saturation density were inducible and fully reversible. In exponentially growing cells, oncogenic Ras-expression had no effect on proliferation rates, Erk phosphorylation, or the level of cyclin D1, and Ras-induction did not confer serum-independent growth. As expected, growth to high density in uninduced cells led to quiescence with a low level of cyclin D1 and no active Erk; in this setting, Ras induction prevented full downregulation of cyclin D1 and inactivation of Erk. Our results show that Ras expression to a level sufficient for transformation leads to relatively subtle effects on known downstream targets, and that the focus formation and increased saturation density growth induced by Ras is not a result of growth factor independence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A, Pestell RG . 1995 J. Biol. Chem. 270: 23589–23597

  • Balmain A, Ramsden M, Bowden GT, Smith J . 1984 Nature 307: 658–660

  • Brown M, Figge J, Hansen U, Wright C, Jeang K-T, Khoury G, Livingston DM, Roberts TM . 1987 Cell 49: 603–612

  • Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, Shen Q, O'Hagan R, Pantginis J, Zhou H, Horner JW, II, Cordon-Cardo C, Yancopoulos GD, DePinho RA . 1999 Nature 400: 468–472

  • Chung HH, Kim R, Kim SH . 1992 Biochimica et Biophysica Acta 1129: 278–286

  • Diehl JA, Cheng M, Roussel MF, Sherr CJ . 1998 Genes Dev. 12: 3499–3511

  • Donze O, Jagus R, Koromilas AE, Hershey JW, Sonenberg N . 1995 EMBO J. 14: 3828–3834

  • Durkin JP, Whitfield JF . 1986 Mol. Cell. Biol. 6: 1386–1392

  • Ellis RW, DeFeo D, Maryak JM, Young H, Shih TY, Chang EH, Lowy DR, Scolnick EM . 1980 J. Virol. 36: 408–420

  • Fan J, Bertino JR . 1997 Oncogene 14: 2595–2607

  • Filmus J, Robles AI, Shi W, Wong MJ, Colombo LL, Conti CJ . 1994 Oncogene 9: 3627–3633

  • Gille H, Downward J . 1999 J. Biol. Chem. 274: 22033–22040

  • Gjoerup O, Lukas J, Bartek J, Willumsen B . 1998 J. Biol. Chem. 273: 18812–18818

  • Gossen M, Bujard H . 1992 Proc. Natl. Acad. Sci. USA 89: 5547–5551

  • Hall CV, Jacob PE, Ringold GM, Lee F . 1983 J. Mol. Appl. Genet. 2: 101–109

  • Hartman SC, Mulligan RC . 1988 Proc. Natl. Acad. Sci. USA 85: 8047–8051

  • Harvey JJ, East J . 1971 International Review of Experiment Pathology Vol. 10: Academic Press pp 265–360

    Google Scholar 

  • Hinds PW, Dowdy SF, Eaton EN, Arnold A, Weinberg RA . 1994 Proc. Natl. Acad. Sci. USA 91: 709–713

  • Hitomi M, Stacey DW . 1999 Mol. Cell. Biol. 19: 4623–4632

  • Holley RW . 1975 Nature 258: 487–490

  • Hu MC-T, Davidson N . 1987 Cell 48: 555–566

  • Jacobsen KD, Willumsen BM . 1995 J. Mol. Biol. 252: 289–295

  • Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ . 1997 Cell 91: 649–659

  • Kaplan PL, Anderson M, Ozanne B . 1982 Proc. Natl. Acad. Sci. USA 79: 485–489

  • Kumar R, Sukumar S, Barbacid M . 1990 Science 248: 1101–1104

  • Lavoie JN, L'Allemain G, Brunet A, Muller R, Pouyssegur J . 1996 J. Biol. Chem. 271: 20608–20616

  • Leevers SJ, Marshall CJ . 1992 EMBO J. 11: 569–574

  • Leone G, DeGregori J, Sears R, Jakoi L, Nevins JR . 1997 Nature 387: 422–426

  • Liu JJ, Chao JR, Jiang MC, Ng SY, Yen JJ, Yang-Yen HF . 1995 Mol. Cell. Biol. 15: 3654–3663

  • Lowy DR, Willumsen BM . 1993 Ann. Rev. Biochem. 62: 851–891

  • Mittnacht S, Paterson H, Olson MF, Marshall CJ . 1997 Cur. Biol. 7: 219–221

  • Mulcahy LS, Smith MR, Stacey DW . 1985 Nature 313: 241–243

  • Pardee AB, Dubrow R, Hamlin JL, Kleitzen RE . 1978 Annu. Rev. Biochem. 47: 717–750

  • Peeper DS, Upton TM, Ladha MH, Neuman E, Zalvide J, Bernards R, DeCaprio JA, Ewen ME . 1997 Nature 386: 177–181

  • Pironin M, Clement G, Benzakour O, Barritault D, Lawrence D, Vigier P . 1992 Int. J. Cancer 51: 980–988

  • Quelle DE, Ashmun RA, Hannon GJ, Rehberger PA, Trono D, Richter KH, Walker C, Beach D, Sherr CJ, Serrano M . 1995 Oncogene 11: 635–645

  • Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar-Sagi D, Roussel MF, Sherr CJ . 1993 Genes Dev. 7: 1559–1571

  • Resnitzky D, Gossen M, Bujard H, Reed SI . 1994 Mol. Cell. Biol. 14: 1669–1679

  • Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J . 1994 Nature 370: 527–532

  • Samuels ML, Weber MJ, Bishop JM, McMahon M . 1993 Mol. Cell. Biol. 13: 6241–6252

  • Schönthal A, Herrlich P, Rahmsdorf HJ, Ponta H . 1988 Cell 54: 325–334

  • Serrano M, Lee HW, Chin L, Cordon-Cardo C, Beach D, DePinho RA . 1996 Cell 85: 27–37

  • Shih TY, Stokes PE, Smythers GW, Dhar R, Oroszlan S . 1982 J. Biol. Chem. 257: 11767–11773

  • Simons A, Tils D, Wilcken-Bergmann BV, Müller-Hill B . 1984 Proc. Natl. Acad. Sci. USA 81: 1624–1628

  • Simons PJ, Durmashkin RR, Turano A, Phillips DEH, Chesterman FC . 1967 Nature 214: 897–898

  • Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P . 1987 Cell 49: 465–475

  • Ulsh L, Shih TY . 1984 Mol. Cell. Biol. 4: 1647–1652

  • Villalonga P, Rius E, Bachs O, Agell N . 2000 Oncogene 19: 690–699

  • Weinberg RA . 1995 Cell 81: 323–330

  • Willumsen BM . 1995 Methods Enzymol: Lipid modifications of proteins Vol. 250: Casey PJ and Buss JE. (eds) Academic Press: Orlando, FL pp 269–284

    Book  Google Scholar 

  • Willumsen BM, Vass WC, Velu TJ, Papageorge AG, Schiller J, Lowy DR . 1991 Mol. Cell. Biol. 11: 6026–6033

  • Winston JT, Coats SR, Wang YZ, Pledger WJ . 1996 Oncogene 12: 127–134

  • Won KA, Xiong Y, Beach D, Gilman MZ . 1992 Proc. Natl. Acad. Sci. USA 89: 9910–9914

  • Zavada J, Macpherson I . 1970 Nature 225: 24–26

  • Zhan X, Goldfarb M . 1986 Mol. Cell. Biol. 6: 3541–3544

Download references

Acknowledgements

The excellent technical assistance of Marianne Knudsen and Rikke Ingvorsen is gratefully acknowledged. We thank Douglas Lowy for critical reading of an early version of the manuscript. This work was funded by grants 97 100 13 from the Danish Cancer Society and 9600821 from the Danish Medical Research council to BM Willumsen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berthe M Willumsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobsen, K., Groth, A. & Willumsen, B. Ras-inducible immortalized fibroblasts: focus formation without cell cycle deregulation. Oncogene 21, 3058–3067 (2002). https://doi.org/10.1038/sj.onc.1205423

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205423

Keywords

This article is cited by

Search

Quick links