Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

HST-1/FGF-4 gene activation induces spermatogenesis and prevents adriamycin-induced testicular toxicity

Abstract

We previously demonstrated expression of the HST-1/FGF-4 gene in the testis of normal adult animals, which suggests its possible role in spermatogenesis. For an understanding of its functional significance in the testis, conditional transgene expression was used. Precise genetic switches can be efficiently generated in a straightforward manner using adenovirus-carrying Cre recombinase, which means our new strategies promise to contribute substantially to a better and prompt understanding of the functions of genes in vivo by controlling the expression of any gene to any organ at any desired time. Our new method demonstrated for the first time that the specific gain of function of the HST-1/FGF-4 gene in the testis resulted in markedly enhanced spermatogenesis. To further investigate the function and therapeutic potency of HST-1/FGF-4, transgenic mice with enhanced HST-1/FGF-4 expression in the testis were exposed to adriamycin (ADR), an anticancer drug causing severe testicular toxicity. Degree of damage to spermatogenesis was assessed by sperm count, testicular weight, histology, and DNA ploidy. Induced expression of HST-1/FGF-4 markedly enhanced the recovery of ADR-induced testicular damage. Furthermore, adenoviruses carrying the HST-1/FGF-4 gene ameliorated testicular toxicity of ADR. These results with new adenovirus-mediated Cre/lox conditional mice indicated that HST-1/FGF-4 could be an important factor for spermatogenesis, presenting a new paradigm to treat impaired fertility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Avarbock MR, Brinster CJ, Brinster RL . 1996 Nat. Med. 2: 693–696

  • Cancilla B, Risbridger GP . 1998 Biol. Reprod. 58: 1138–1145

  • Ford WC . 2001 Lancet 357: 1223–1224

  • Griswold MD . 1988 Int. Rev. Cytol. 110: 133–156

  • Griswold MD, Morales C, Sylvester SR . 1988 Oxf. Rev. Reprod. Biol. 10: 124–161

  • Grell RF, Oakberg EF, Generoso EE . 1980 Proc. Natl. Acad. Sci. USA 77: 6720–6723

  • Haimovitz-Friedman A, Balaban N, McLoughlin M, Ehleiter D, Michaeli J, Vlodavsky I, Fuks Z . 1994 Cancer Res. 54: 2591–2597

  • Hall SJ, Bar-Chama N, Ta S, Gordon JW . 2000 Hum. Gene Ther. 11: 1705–1712

  • Hellstrom WJ, Tesluk H, Deitch AD, de Vere White RW . 1990 Urology 35: 321–326

  • Hogan B, Constantini F, Lacy E . 1986 Manipulating the mouse embryo. A Laboratory Manual Cold Spring Harbor Laboratory

  • Ishii Y, Fukuda K, Saiga H, Matsushita S, Yasugi S . 1997 Dev. Growth Differ. 39: 643–653

  • Ivanova M, Mollova M, Ivanova-Kicheva MG, Petrov M, Djarkova T, Somlev B . 1999 Theriogenology 1: 163–170

  • Kanegae Y, Makimura M, Saito I . 1994 Jpn. J. Med. Sci. Biol. 47: 157–166

  • Kanegae Y, Lee G, Sato Y, Tanaka M, Nakai M, Sakaki T, Sugano S, Saito I . 1995 Nucleic Acids Res. 23: 3816–3821

  • Konishi H, Ochiya T, Sakamoto H, Tsukamoto M, Saito I, Muto T, Sugimura T, Terada M . 1995 J. Clin. Invest. 96: 1125–1130

  • Konishi H, Ochiya T, Yasuda Y, Sakamoto H, Muto T, Sugimura T, Terada M . 1996 Oncogene 13: 9–19

  • Le Magueresse-Battistoni B, Wolff J, Morera AM, Benahmed M . 1994 Endocrinol. 135: 2404–2411

  • Matsui H, Toyoda K, Shinoda K, Okamiya H, Furukawa F, Kawanishi T, Takahashi M . 1993 Eisei Shikenjo Hokoku 111: 39–46

  • Miho Y, Kouroku Y, Fujita E, Mukasa T, Urase K, Kasahara T, Isoai A, Momoi M, Momoi T . 1999 Cell Death Differ. 6: 463–470

  • Niswander L, Martin GR . 1992 Development 114: 755–768

  • Niswander L, Martin GR . 1993 Nature 361: 68–71

  • Niswander L, Jeffrey S, Martin GR, Tickle C . 1994 Nature 371: 609–612

  • Oakberg EF, Huckins C . 1976 Stem Cell of Renewing Cell Populations Cairnie AB, Lala P and Osmond DG (ed) Academic Press, New York pp 287–302

    Book  Google Scholar 

  • Ochiya T, Sakamoto H, Tsukamoto M, Sugimura T, Terada M . 1995 J. Cell Biol. 130: 997–1003

  • Ogawa T, Dobrinski I, Avarbock MR, Brinster RL . 2000 Nat. Med. 6: 29–34

  • Orth JM, Boehm R . 1990 Anat. Rec. 226: 320–327

  • Russo A, Levis AG . 1992 Environ. Mol. Mutagen. 19: 125–131

  • Sakamoto H, Mori M, Taira M, Yoshida T, Matsukawa S, Shimizu K, Sekiguchi M, Terada M, Sugimura T . 1986 Proc. Natl. Acad. Sci. USA 83: 3997–4001

  • Sakamoto H, Ochiya T, Sato Y, Tsukamoto M, Konishi H, Saito I, Sugimura T, Terada M . 1994 Proc. Natl. Acad. Sci. USA 91: 12368–12372

  • Sauer B . 1998 Methods 14: 381–392

  • Sharpe RM . 1994 Knobil E and Neil JD. (eds) Physiology of reproduction 6th edn Vol. 1: New York: Raven Press pp 1363–1434

    Google Scholar 

  • Shinoda K, Mitsumori K, Yasuhara K, Uneyama C, Onodera H, Hirose M, Uehara M . 1999 Arch. Toxicol. 73: 274–281

  • Simpkins H, Pearlman LF, Thompson LM . 1984 Cancer Res. 44: 613–618

  • Simpkins H, Pearlman LF . 1984 Biochim. Biophys. Acta. 783: 293–300

  • Sjoblom T, West A, Lahdetie J . 1998 Environ. Mol. Mutagen. 31: 133–148

  • Steger K, Tetens F, Seitz J, Grothe C, Bergman M . 1998 Histochem. Cell Biol. 110: 57–62

  • Strohmeyer T, Peter S, Hartmann M, Munemitsu S, Ackermann R, Ullrich A, Slamon DJ . 1991 Cancer Res. 51: 1811–1816

  • Suzuki HR, Sakamoto H, Yoshida T, Sugimura T, Terada M, Solursh M . 1992 Dev. Biol. 150: 219–222

  • Takahama Y, Ochiya T, Tanooka H, Yamamoto H, Sakamoto H, Nakano H, Terada M . 1999 Oncogene 18: 5943–5947

  • Van Dissel-Emiliani FM, De Boer-Brouwer M, De Rooij DG . 1996 Endocrinol. 137: 647–654

  • Wagle A, Singh JP . 2000 J. Pharmacol. Exp. Ther. 295: 889–895

  • Werdien D, Peiler G, Ryffel GU . 2001 Nucleic Acids Res. 29: E53–

  • Wilkinson DG . 1992 In situ hybridization: A practical approach IRL Press: London

  • Yamamoto H, Ochiya T, Takahama Y, Ishii Y, Osumi N, Sakamoto H, Terada M . 2000 Oncogene 19: 3805–3810

  • Yoshida T, Ishimaru K, Sakamoto H, Yokota J, Hirohashi S, Igarashi K, Sudo K, Terada M . 1994 Cancer Lett. 15: 261–268

  • Yoshida T, Miyagawa K, Sakamoto H, Sugimura T, Terada M . 1991 Methods Enzymol. 198: 124–138

  • Yoshida T, Tsutsumi M, Sakamoto H, Miyagawa K, Teshima S, Sugimura T, Terada M . 1988 Biochem. Biophys. Res. Commun. 155: 1324–1329

Download references

Acknowledgements

We gratefully thank Dr Junichi Miyazaki (Osaka University, Japan) for his kind gift of CAG promoter. We thank Ms Maki Abe and Ms Masako Hosoda for their excellent technical work. This work was supported in part by a Grant-in-Aid for the Second-Term Comprehensive 10-Year Strategy for Cancer Control, Health Science Research Grants for the Research on Human Genome and Gene Therapy from the Ministry of Health, Labor and Welfare of Japan, and a Grant-in-Aid by Japan Owner's Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Terada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, H., Ochiya, T., Tamamushi, S. et al. HST-1/FGF-4 gene activation induces spermatogenesis and prevents adriamycin-induced testicular toxicity. Oncogene 21, 899–908 (2002). https://doi.org/10.1038/sj.onc.1205135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205135

Keywords

This article is cited by

Search

Quick links