Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Wnt-1 and int-2 mammary oncogene effects on the β-catenin pathway in immortalized mouse mammary epithelial cells are not sufficient for tumorigenesis

Abstract

Development of strategies for prevention of breast cancer development requires an understanding of the effects of mammary oncogenes on mammary cells at early stages in neoplastic transformation. As mammary oncogenes wnt-1 and int-2 affect different signal transduction pathways, we investigated their effects on established mouse mammary epithelial cell lines (MMECLs) reflecting early stages in tumorigenesis. Normal interactions between β-catenin and E-cadherin were abrogated in all three immortalized MMECLs and the cells lacked β-catenin-mediated transactivation activity, detectable using a reporter assay, suggesting that alterations in cell adhesion may be very early events in mammary tumorigenesis. Immortalized FSK4 and EL12 cells and hyperplastic TM3 cells were stably transfected with expression vectors encoding wnt-1 or int-2 or the control vector, and drug-selected pooled cells from each line were confirmed by reverse transcription-polymerase chain reaction to express the transfected oncogene; this expression persisted in the cells analysed in vitro and in vivo. Resultant phenotypic changes depended both on the oncogene and the target mammary cell line. In FSK4 cells, expression of wnt-1 or int-2 resulted in proliferative changes in vitro, including reduced contact inhibition, increased β-catenin expression, and decreased p53 transcriptional activity, but neither oncogene conferred upon those cells the ability to produce tumors in vivo. EL12 cells were highly refractory to the effects of both oncogenes, with the only measurable changes being increased E-cadherin levels induced by both oncogenes and increased proliferation of the int-2-transfected cells in the absence of serum. Parental TM3 cells were phenotypically similar to wnt-1- or int-2-transfected FSK4 cells and displayed an increased rate of proliferation in vitro and markedly increased tumorigenicity in vivo following transfection with int-2 but not with wnt-1. These results suggest that wnt-1 signaling is redundant in the hyperplastic TM3 cells and indicate that wnt-1-induced effects in the immortalized FSK4 and EL12 cells were not sufficient to mediate a tumorigenic phenotype. This study showed that the wnt-1 and int-2 oncogenes have similar but distinguishable effects on immortalized MMECLs and that the genetic background of the mammary cells greatly influences the consequences of oncogene expression at early stages of cell transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

CMV:

cytomegalovirus

ECL:

enhanced chemiluminescence

EGF:

epidermal growth factor

FGF:

fibroblast growth factor

FGFR:

FGF receptor

MMECL:

mouse mammary epithelial cell line

MMTV:

mouse mammary tumor virus

MTT:

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

PAGE:

polyacrylamide gel electrophoresis

PBS:

phosphate-buffered saline

RT–PCR:

reverse transcription polymerase chain reaction

SDS:

sodium dodecyl sulfate

References

  • Aberle H, Schwartz H, Kemler R . 1996 J. Cell Biochem. 61: 514–523

  • Aoki M, Hecht A, Kruse U, Kemler R, Vogt PK . 1999 Proc. Natl. Acad. Sci. USA 96: 139–144

  • Bonnette SG, Kittrell FS, Stephens LC, Meyn RE, Medina D . 1999 Carcinogenesis 20: 1715–1720

  • Clevers H, van de Wetering M . 1997 Trends Genet. 13: 485–489

  • Coleman-Krnacik S, Rosen JM . 1994 Mol. Endocrinol. 8: 218–229

  • Damalas A, Ben-Ze'ev A, Simcha I, Shtutman M, Leal JF, Zhurinsky J, Geiger B, Oren M . 1999 EMBO J. 18: 3054–3063

  • Dickson C, Smith R, Brookes S, Peters G . 1984 Cell 37: 529–536

  • Dixon M, Deed R, Acland P, Moore R, Whyte A, Peters G, Dickson C . 1989 Mol. Cell. Biol. 9: 4896–4902

  • Donehower LA, Godley LA, Aldaz CM, Pyle R, Shi YP, Pinkel D, Gray J, Bradley A, Medina D, Varmus HE . 1995 Genes Dev. 9: 882–895

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS, Bradley A . 1992 Nature 356: 215–221

  • el Yazidi I, Boilly-Marer Y . 1995 Anticancer Res. 15: 783–790

  • Fioravanti L, Cappelletti V, Coradini D, Miodini P, Borsani G, Daidone MG, Di Fronzo G . 1997 Int. J. Cancer 74: 620–624

  • Galzie Z, Kinsella AR, Smith JA . 1997 Biochem. Cell Biol. 75: 669–685

  • Gavin BJ, McMahon AP . 1992 Mol. Cell. Biol. 12: 2418–2423

  • Hajitou A, Baramova EN, Bajou K, Noe V, Bruyneel E, Mareel M, Collette J, Foidart JM, Calberg-Bacq CM . 1998 Oncogene 17: 2059–2071

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW . 1998 Science 281: 1509–1512

  • Hinck L, Nelson WJ, Papkoff J . 1994 J. Cell Biol. 124: 729–741

  • Hollmann CA, Medina D, Butel JS . 2000 In Vitro Cell. Dev. Biol. Anim. 36: 74–76

  • Hsu SC, Galceran J, Grosschedl R . 1998 Mol. Cell. Biol. 18: 4807–4818

  • Jackson D, Bresnick J, Rosewell I, Crafton T, Poulsom R, Stamp G, Dickson C . 1997 J. Cell Sci. 110: 1261–1268

  • Jakobovits A, Shackleford GM, Varmus HE, Martin GR . 1986 Proc. Natl. Acad. Sci. USA 83: 7806–7810

  • Jansen LAM, Mesnil M, Jongen WMF . 1996 Carcinogenesis 17: 1527–1531

  • Jerry DJ, Ozbun MA, Kittrell FS, Lane DP, Medina D, Butel JS . 1993 Cancer Res. 53: 3374–3381

  • Jiang WG . 1996 Brit. J. Surg. 83: 437–446

  • Kern FG, McLeskey SW, Zhang L, Kurebayashi J, Liu Y, Ding IY, Kharbanda S, Chen D, Miller D, Cullen K, Paik S, Dickson RB . 1994 Breast Cancer Res. Treat. 31: 153–165

  • Kittrell FS, Oborn CJ, Medina D . 1992 Cancer Res. 52: 1924–1932

  • Klint P, Claesson-Welsh L . 1999 Front. Biosci. 4: D165–D177

  • Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B, Clevers H . 1997 Science 275: 1784–1787

  • Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT . 2000 Trends Genet. 16: 279–283

  • Kwan H, Pecenka V, Tsukamoto A, Parslow TG, Guzman R, Lin TP, Muller WJ, Lee FS, Leder P, Varmus HE . 1992 Mol. Cell. Biol. 12: 147–154

  • Marsh SK, Bansal GS, Zammit C, Barnard R, Coope R, Roberts-Clarke D, Gomm JJ, Coombes RC, Johnston CL . 1999 Oncogene 18: 1053–1060

  • McLeskey SW, Zhang L, Kharbanda S, Kurebayashi J, Lippman ME, Dickson RB, Kern FG . 1996 Breast Cancer Res. Treat. 39: 103–117

  • Medina D . 1973 Methods Cancer Res. 7: 353–414

  • Medina D, Kittrell FS . 1993 Carcinogenesis 14: 25–28

  • Medina D, Kittrell FS, Liu YJ, Schwartz M . 1993a Cancer Res. 53: 663–667

  • Medina D, Kittrell FS, Oborn CJ, Schwartz M . 1993b Cancer Res. 53: 668–674

  • Medina D, Stephens LC, Bonilla PJ, Hollmann CA, Schwahn D, Kuperwasser C, Jerry DJ, Butel JS, Meyn RE . 1998 Mol. Carcinog. 22: 199–207

  • Merlo GR, Blondel BJ, Deed R, MacAllan D, Peters G, Dickson C, Liscia DS, Ciardiello F, Valverius EM, Salomon DS, Callahan R . 1990 Cell Growth Differ. 1: 463–472

  • Miller JR, Moon RT . 1996 Genes Dev. 10: 2527–2539

  • Mosman T . 1983 J. Immunol. Methods 65: 55–63

  • Muller WJ, Lee FS, Dickson C, Peters G, Pattengale P, Leder P . 1990 EMBO J. 9: 907–913

  • Naylor S, Smalley MJ, Robertson D, Gusterson BA, Edwards PA, Dale TC . 2000 J. Cell Sci. 113: 2129–2138

  • Nusse R, van Ooyen A, Cox D, Fung YK, Varmus H . 1984 Nature 307: 131–136

  • Obaya AJ, Mateyak MK, Sedivy JM . 1999 Oncogene 18: 2934–2941

  • Ozbun MA, Jerry DJ, Kittrell FS, Medina D, Butel JS . 1993 Cancer Res. 53: 1646–1652

  • Papkoff J . 1997 J. Biol. Chem. 272: 4536–4543

  • Peters G, Lee AE, Dickson C . 1984 Nature 309: 273–275

  • Pierceall WE, Woodard AS, Morrow JS, Rimm D, Fearon ER . 1995 Oncogene 11: 1319–1326

  • Polakis P . 2000 Genes Dev. 14: 1837–1851

  • Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P . 1997 Science 275: 1790–1792

  • Saito Y, Vandenheede JR, Cohen P . 1994 Biochem. J. 303: 27–31

  • Schroeder JA, Troyer KL, Lee DC . 2000 Oncogene 19: 3193–3199

  • Shaulian E, Resnitzky D, Shifman O, Blandino G, Amsterdam A, Yayon A, Oren M . 1997 Oncogene 15: 2717–2725

  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Ze'ev A . 1999 Proc. Natl. Acad. Sci. USA 96: 5522–5527

  • Smalley MJ, Dale TC . 1999 Cancer Metastasis Rev. 18: 215–230

  • Sutherland C, Leighton IA, Cohen P . 1993 Biochem. J. 296: 15–19

  • Tetsu O, McCormick F . 1999 Nature 398: 422–426

  • Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE . 1988 Cell 55: 619–625

  • Uitenbroek DG . 1997 SISA Binomial. Retrieved January 9, 2001, from the World Wide Web: http://home.clara.net/sisa/binomial.htm

  • Venesio T, Taverna D, Hynes NE, Deed R, MacAllan D, Ciardiello F, Valverius EM, Salomon DS, Callahan R, Merlo G . 1992 Cell Growth Differ. 3: 63–71

  • Vogelstein B, Kinzler KW . 1992 Cell 70: 523–526

  • Weber-Hall SJ, Phippard DJ, Niemeyer CC, Dale TC . 1994 Differentiation 57: 205–214

  • Wilkinson DG, Peters G, Dickson C, McMahon AP . 1988 EMBO J. 7: 691–695

Download references

Acknowledgements

The authors thank C Wong, JA Lednicky and PJ Bonilla for assistance and helpful advice. This work was supported in part by research grant CA25215 from the National Cancer Institute and by the Research Training Program in Breast Cancer (BC980058) from the US Army Medical Research and Materiel Command.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet S Butel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollmann, C., Kittrell, F., Medina, D. et al. Wnt-1 and int-2 mammary oncogene effects on the β-catenin pathway in immortalized mouse mammary epithelial cells are not sufficient for tumorigenesis. Oncogene 20, 7645–7657 (2001). https://doi.org/10.1038/sj.onc.1204980

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204980

Keywords

Search

Quick links