Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Identification of a C-terminal tripeptide motif involved in the control of rapid proteasomal degradation of c-Fos proto-oncoprotein during the G0-to-S phase transition

Abstract

c-Fos proto-oncoprotein is rapidly and transiently expressed in cells undergoing the G0-to-S phase transition in response to stimulation for growth by serum. Under these conditions, the rapid decay of the protein occurring after induction is accounted for by efficient recognition and degradation by the proteasome. PEST motifs are sequences rich in Pro, Glu, Asp, Ser and Thr which have been proposed to constitute protein instability determinants. c-Fos contains three such motifs, one of which comprises the C-terminal 20 amino acids and has already been proposed to be the major determinant of c-Fos instability. Using site-directed mutagenesis and an expression system reproducing c-fos gene transient expression in transfected cells, we have analysed the turnover of c-Fos mutants deleted of the various PEST sequences in synchronized mouse embryo fibroblasts. Our data showed no role for the two internal PEST motifs in c-Fos instability. However, deletion of the C-terminal PEST region led to only a twofold stabilization of the protein. Taken together, these data indicate that c-Fos instability during the G0-to-S phase transition is governed by a major non-PEST destabilizer and a C-terminal degradation-accelerating element. Further dissection of c-Fos C-terminal region showed that the degradation-accelerating effect is not contributed by the whole PEST sequence but by a short PTL tripeptide which cannot be considered as a PEST motif and which can act in the absence of any PEST environment. Interestingly, the PTL motif is conserved in other members of the fos multigene family. Nevertheless, its contribution to protein instability is restricted to c-Fos suggesting that the mechanisms whereby the various Fos proteins are broken down are, at least partially, different. MAP kinases-mediated phosphorylation of two serines close to PTL, which are both phosphorylated all over the G0-to-S phase transition, have been proposed by others to stabilize c-Fos protein significantly. We, however, showed that the PTL motif does not exert its effect by counteracting a stabilizing effect of these phosphorylations under our experimental conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abate C, Luk D, Curran T . 1990 Cell Growth Diff. 1: 455–462

  • Acquaviva C, Salvat C, Brockly F, Bossis G, Ferrara P, Piechaczyk M, Jariel-Encontre I . 2001 Oncogene 20: 942–950

  • Angel P, Herrlich P . 1994 The FOS and JUN families of transcription factors Boca Raton: CRC press, Florida USA

  • Aniento F, Papavassiliou AG, Knecht E, Roche E . 1996 FEBS Lett. 390: 47–52

  • Bies J, Nazarov V, Wolff L . 1999 J. Virol. 73: 2038–2044

  • Boudjelal M, Wang Z, Voorhees JJ, Fisher GJ . 2000 Cancer Res. 60: 2247–2252

  • Brown HJ, Sutherland JA, Cook A, Bannister AJ, Kouzarides T . 1995 EMBO J. 14: 124–131

  • Carillo S, Pariat M, Steff A, Jariel-Encontre I, Poulat F, Berta P, Piechaczyk M . 1996 Biochem. J. 313: 245–251

  • Carillo S, Pariat M, Steff AM, Roux P, Etienne-Julan M, Lorca T, Piechaczyk M . 1994 Oncogene 9: 1679–1689

  • Chen RH, Juo PC, Curran T, Blenis J . 1996 Oncogene 12: 1493–1502

  • Ciechanover A, Orian A, Schwartz AL . 2000a Bioessays 22: 442–451

  • Ciechanover A, Orian A, Schwartz AL . 2000b J. Cell. Biochem. 77: 40–51

  • Coffino P. . 1998 Ubiquitin and the biology of the cell. Peters JN, Robins JR and Finley D (eds) Plenum Press, NY pp 411–428

  • Curran T . 1988 The Oncogene Handbook. Reddy EP, Skalka A-M and Curran T (eds) Elsevier pp 307–325

  • Curran T, Miller AD, Zokas L, Verma IM . 1984 Cell 36: 259–268

  • Curran T, Verma IM . 1984 Virology. 135: 218–228

  • Fleming JV, Wang TC . 2000 Mol. Cell. Biol. 20: 4932–4947

  • Ghoda L, Sidney D, Macrae M, Coffino P . 1992 Mol. Cell. Biol. 12: 2178–2185

  • Harlow E, Lane D . 1999 Using antibodies: a laboratory manual CSHL Press: NY

  • He H, Qi XM, Grossmann J, Distelhorst CW . 1998 J. Biol. Chem. 273: 25015–25019

  • Hermida-Matsumoto ML, Chock PB, Curran T, Yang DC . 1996 J. Biol. Chem. 271: 4930–4936

  • Hirai S, Kawasaki H, Yaniv M, Suzuki K . 1991 FEBS Lett. 287: 57–61

  • Hochstrasser M, Kornitzer D . 1988 Ubiquitin and the biology of the cell. Peters J-M, Robins JR and Finley D (eds) Plenum Press: NY

  • Karin M, Liu Z, Zandi E . 1997 Curr. Opin. Cell. Biol. 9: 240–246

  • Kornitzer D, Ciechanover A . 2000 J. Cell. Physiol. 182: 1–11

  • Kovary K, Bravo R . 1991 Mol. Cell. Biol. 11: 2451–2459

  • Kovary K, Bravo R . 1992 Mol. Cell. Biol. 12: 5015–5023

  • Krappmann D, Wulczyn FG, Scheidereit C . 1996 EMBO J. 15: 6716–6726

  • Laemmli EK . 1971 Nature 227: 680–685

  • Lallemand D, Spyrou G, Yaniv M, Pfarr CM . 1997 Oncogene 14: 819–830

  • Langenfeld J, Kiyokawa H, Sekula D, Boyle J, Dmitrovsky E . 1997 Proc. Natl. Acad. Sci. USA 94: 12070–12074

  • Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang CC, Kain SR . 1998 J. Biol. Chem. 273: 34970–34975

  • Matsui M, Tokuhara M, Konuma Y, Nomura N, Ishizaki R . 1990 Oncogene 5: 249–255

  • Miao GG, Curran T . 1994 Mol. Cell. Biol. 14: 4295–4310

  • Mils V, Piette J, Barette C, Veyrune J, Tesniere A, Escot C, Guilhou JJ, Basset-Seguin N . 1997 Oncogene 14: 1555–1561

  • Molinari M, Anagli J, Carafoli E . 1995 J. Biol. Chem. 270: 2032–2035

  • Musti AM, Treier M, Peverali FA, Bohmann D . 1996 Biol. Chem. 377: 619–624

  • Okazaki K, Sagata N . 1995 EMBO J. 14: 5048–5059

  • Penrose KJ, McBride AA . 2000 J. Virol. 74: 6031–6038

  • Peters J-M, King RW, Deshaies RJ . 1998 Ubiquitin and the biology of the cell cycle. Peters J-M, Harris JR and Finley D (eds) Plenum Press: NY

  • Piechaczyk M, Blanchard JM . 1994 Crit. Rev. Oncol. Hematol. 17: 93–131

  • Rech J, Fort P . 1989 Nucleic Acids Res. 17: 2874

  • Rechsteiner M, Rogers SW . 1996 Trends Biochem. Sci. 21: 267–271

  • Rogers S, Wells R, Rechsteiner M . 1986 Science 234: 364–368

  • Roux P, Blanchard JM, Fernandez A, Lamb N, Jeanteur P, Piechaczyk M . 1990 Cell 63: 341–351

  • Roux P, Carillo S, Blanchard J-M, Jeanteur P, Piechaczyk M . 1994 The c-fos oncogene. Angel P and Herrlich P (eds) CRC Press: Boca Raton, Florida, USA pp 87–95

  • Salvat C, Acquaviva C, Scheffner M, Robbins I, Piechaczyk M, Jariel-Encontre I . 2000 Eur. J. Biochem. 267: 3712–3722

  • Salvat C, Aquaviva C, Jariel-Encontre I, Ferrara P, Pariat M, Steff AM, Carillo S, Piechaczyk M . 1999 Mol. Biol. Rep. 26: 45–51

  • Salvat C, Jariel-Encontre I, Acquaviva C, Omura S, Piechaczyk M . 1998 Oncogene 17: 327–337

  • Sambrook J, Fritsch EF, Maniatis T . 1989 Molecular cloning Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

  • Schoonbroodt S, Ferreira V, Best-Belpomme M, Boelaert JR, Legrand-Poels S, Korner M, Piette J . 2000 J. Immunol. 164: 4292–4300

  • Schuermann M, Jooss K, Muller R . 1991 Oncogene 6: 567–576

  • Sheaff RJ, Singer JD, Swanger J, Smitherman M, Roberts JM, Clurman BE . 2000 Mol. Cell. 5: 403–410

  • Shumway SD, Maki M, Miyamoto S . 1999 J. Biol. Chem. 274: 30874–30881

  • Stancovski I, Gonen H, Orian A, Schwartz AL, Ciechanover A . 1995 Mol. Cell. Biol. 15: 7106–7116

  • Treier M, Staszewski LM, Bohmann D . 1994 Cell 78: 787–798

  • Tsurumi C, Ishida N, Tamura T, Kakizuka A, Nishida E, Okumura E, Kishimoto T, Inagaki M, Okazaki K, Sagata N, et al . 1995 Mol. Cell. Biol. 15: 5682–5687

  • Verma R, Deshaies RJ . 2000 Cell 101: 341–344

  • Veyrune JL, Carillo S, Vie A, Blanchard JM . 1995 Oncogene 11: 2127–2134

  • Wang W, Chevray PM, Nathans D . 1996 Proc. Natl. Acad. Sci. USA. 93: 8236–8240

  • Watt F, Molloy PL . 1993 Nucleic Acids Res. 21: 5092–5100

  • Wilkinson KD . 2000 Semin. Cell. Dev. Biol. 11: 141–148

  • Wisdom R . 1999 Exp. Cell. Res. 253: 180–185

  • Xu W, Gong L, Haddad MM, Bischof O, Campisi J, Yeh ET, Medrano EE . 2000 Exp. Cell. Res. 255: 135–143

Download references

Acknowledgements

This work was supported by grants from the Centre National de la Recherche Scientifique, the Ligue contre le Cancer, the Association de Recherche contre le Cancer. We are grateful to Drs O Coux and I Robbins for fruitful discussion and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Piechaczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acquaviva, C., Brockly, F., Ferrara, P. et al. Identification of a C-terminal tripeptide motif involved in the control of rapid proteasomal degradation of c-Fos proto-oncoprotein during the G0-to-S phase transition. Oncogene 20, 7563–7572 (2001). https://doi.org/10.1038/sj.onc.1204880

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204880

Keywords

Search

Quick links