Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

p53 binds the nuclear matrix in normal cells: binding involves the proline-rich domain of p53 and increases following genotoxic stress

Abstract

The tumour suppressor p53 is a multifunctional protein important for the maintenance of genomic integrity. It is able to form molecular complexes with different DNA targets and also with cellular proteins involved in DNA transcription and DNA repair. In mammalian cells the biochemical processing of DNA occurs on a nuclear sub-structure termed the nuclear matrix. Previously Deppert and co-workers have identified p53 in association with the nuclear matrix in viral- and non-viral transformed cell lines. In the present study we demonstrate, for the first time, that p53 is bound to the nuclear matrix in primary cultures of normal mammalian cells and that this binding increases following DNA damage. Analysis of cell lines expressing structural mutants of p53 revealed that association with the nuclear matrix is independent of the tertiary and quaternary structure of p53. However, the proline-rich domain towards the N-terminus of p53 (residues 67 to 98) appeared important for binding to the nuclear matrix. This was demonstrated by TET-ON regulated expression of p53-derived constructs in p53−/− murine embryonic fibroblasts (MEF p53−/−). The proline-rich domain of p53 has potential for SH3 protein–protein interaction, and has a role in p53-mediated apoptosis and possibly base excision repair of DNA damage. We discuss our observations in relation to the ability of p53 to facilitate DNA repair and also review evidence indicating that matrix-bound p53 in SV40-transformed cells may facilitate the transforming potential of SV40 large T antigen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Avantaggiati ML, Carbone M, Graessmann A, Nakatani Y, Howard B, Levine AS . 1996 EMBO J. 15: 2236–2248

  • Berezney R, Coffey DS . 1974 Biochem. Biophys. Res. Commun. 23: 1410–1417

  • Berezney R, Mortillaro MJ, Ma H, Wei X, Samarabandu J . 1995 Int. Rev. Cytol. 162A: 1–65

  • Boulikas T . 1995 Int. Rev. Cytol. 162A: 279–388

  • Cho Y, Gorina S, Jeffrey PD, Pavletich NP . 1994 Science 265: 346–355

  • Cook PR . 1991 Cell 66: 627–635

  • Cook PR . 2001 EMBO Rep. 2: 14–16

  • Deppert W . 2000 Crit. Rev. Eukaryot. Gene Expr. 10: 45–61

  • Deppert W, Buschausen-Denker G, Patschinsky T, Steinmeyer K . 1990 Oncogene 5: 1701–1706

  • Deppert W, Haug M . 1986 Mol. Cell. Biol. 6: 2233–2240

  • Deppert W, Schirmbeck R . 1995 Int. Rev. Cytol. 162A: 485–537

  • Deppert W, Steinmayer, Richter W . 1989 Oncogene 4: 1103–1110

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS, Bradley A . 1992 Nature 356: 215–221

  • Dutta A, Ruppert JM, Aster JC, Winchester E . 1993 Nature 365: 79–82

  • Eckner R, Ludlow JW, Lill NL, Oldread E, Arany Z, Modjtahedi N, DeCaprio JA, Livingston DM, Morgan JA . 1996 Mol. Cell. Biol. 16: 3454–3464

  • Gorina S, Pavletich NP . 1996 Science 274: 1001–1005

  • Gu W, Roeder RG . 1997 Cell 90: 595–606

  • Jackson DA, Cook PR . 1995 Int. Rev. Cytol. 162A: 125–149

  • Jimenez GS, Khan SH, Stommel JM, Wahl GM . 1999 Oncogene 18: 7656–7665

  • Kennedy BK, Barbie DA, Classon M, Dyson N, Harlow E . 2000 Genes Dev. 14: 2855–2868

  • Klotzsche P, Etzrodt D, Hohenberg H, Bohn W, Deppert W . 1998 Oncogene 16: 3423–3434

  • Leveillard T, Andera L, Bissonnette N, Schaeffer L, Bracco L, Egly JM, Wasylyk B . 1996 EMBO J. 15: 1615–1624

  • Lill NL, Grossman SR, Ginsberg D, DeCaprio J, Livingston DM . 1997 Nature 387: 823–827

  • Lin J, Chen J, Elenbaas B, Levine AJ . 1994 Genes Dev. 8: 1235–1246

  • Lin J, Teresky AK, Levine AJ . 1995 Oncogene 10: 2387–2390

  • Ljungman M . 2000 Neoplasia 2: 208–225

  • Lu H, Levine AJ . 1995 Proc. Natl. Acad. Sci. USA 92: 5154–5158

  • Mancini MA, Shan B, Nickerson JA, Penman S, Lee WH . 1994 Proc. Natl. Acad. Sci. USA 91: 418–422

  • May P, May E . 1999 Oncogene 18: 7621–7636

  • Mee T, Okorokov AL, Metcalfe S, Milner J . 1999 Br. J. Cancer 81: 212–218

  • Milner J, Chan YS, Medcalf EA, Wang Y, Eckhart W . 1993 Oncogene 8: 2001–2008

  • Milner J, Medcalf EA, Cook AC . 1991 Mol. Cell. Biol. 11: 12–19

  • Mittnacht S, Weinberg RA . 1991 Cell 65: 381–393

  • Molinari M, Okorokov AL, Milner J . 1996 Oncogene 13: 2077–2086

  • Nickerson JA, Krockmalnic G, Wan KM, Penman S . 1997 Proc. Natl. Acad. Sci. USA 94: 4446–4450

  • Offer H, Wolkowicz R, Matas D, Blumenstein S, Livneh Z, Rotter V . 1999 FEBS Lett. 450: 197–204

  • Offer H, Zurer I, Banfalvi G, Reha'k M, Falcovitz A, Milyavsky M, Goldfinger N, Rotter V . 2001 Cancer Res. 61: 88–96

  • Okorokov AL, Ponchel F, Milner J . 1997 EMBO J. 16: 6008–6017

  • Pardoll DM, Vogelstein B . 1980 Exp. Cell. Res. 128: 466–470

  • Peden KW, Srinivasan A, Farber JM, Pipas JM . 1989 Virology 168: 13–21

  • Peden KW, Srinivasan A, Vartikar JV, Pipas JM . 1998 Virus Genes 16: 153–165

  • Penman S . 1995 Proc. Natl. Acad. Sci. USA 92: 5251–5257

  • Ruaro EM, Collavin L, Del Sal G, Haffner R, Oren M, Levine AJ, Schneider C . 1997 Proc. Natl. Acad. Sci. USA 94: 4675–4680

  • Rubbi CP, Milner J . 2000 Oncogene 19: 85–96

  • Sakamuro D, Sabbatini P, White E, Prendergast GC . 1997 Oncogene 15: 887–898

  • Spector DL . 1993 Ann. Rev. Cell. Biol. 9: 265–315

  • Spector DL, Goldman RD, Leinwand LA . 1998 Cells: A Laboratory Manual Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York

    Google Scholar 

  • Staufenbiel M, Deppert W . 1983 Cell 33: 173–181

  • Steinmeyer K, Maake H, Deppert W . 1990 Oncogene 5: 1691–1699

  • Stenoien D, Sharp ZD, Smith CL, Mancini MA . 1998 J. Cell. Biochem. 70: 213–221

  • Stratling WH, Yu F . 1999 Crit. Rev. Eukaryot. Gene Expr. 9: 311–318

  • Venot C, Maratrat M, Dureuil C, Conseiller E, Bracco L, Debussche L . 1998 EMBO J. 17: 4668–7469

  • Vogelstein B, Lane D, Levine AJ . 2000 Nature 408: 307–310

  • Walker KK, Levine AJ . 1996 Proc. Natl. Acad. Sci. USA 93: 15335–15340

  • Wang XW, Yeh H, Schaeffer L, Moncollin V, Egly JM, Wang Z, Friedberg EC, Evans MK, Taffe BG, Bohr VA, Weeda G, Hoeijmakers JHJ, Forrester K, Harris CC . 1995 Nature Genetics 10: 188–195

  • Will K, Warnecke G, Albrechtsen N, Boulikas T, Deppert W . 1998 J. Cell. Biochem. 69: 260–270

  • Zerrahn J, Deppert W, Weidemann D, Patschinsky T, Richards F, Milner J . 1992 Oncogene 7: 1371–1381

  • Zhou J, Ahn J, Wilson SH, Prives C . 2001 EMBO J. 20: 914–923

Download references

Acknowledgements

We thank Larry Donehower for kindly donating MEF p53−/− cells, Lorna Warnock for reading the manuscript and Julie Wainwright for help in its preparation. T Axe was a Gordon Piller Research Student funded by the Leukaemia Research Fund. This work was funded by programme and project grants from Yorkshire Cancer Research and the Leukaemia Research Fund to J Milner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jo Milner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, M., Axe, T., Holgate, R. et al. p53 binds the nuclear matrix in normal cells: binding involves the proline-rich domain of p53 and increases following genotoxic stress. Oncogene 20, 5449–5458 (2001). https://doi.org/10.1038/sj.onc.1204705

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204705

Keywords

This article is cited by

Search

Quick links