Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Ionizing radiation but not anticancer drugs causes cell cycle arrest and failure to activate the mitochondrial death pathway in MCF-7 breast carcinoma cells

Abstract

There is considerable evidence that ionizing radiation (IR) and chemotherapeutic drugs mediate apoptosis through the intrinsic death pathway via the release of mitochondrial cytochrome c and activation of caspases -9 and -3. Here we show that MCF-7 cells that lack caspase-3 undergo a caspase-dependent apoptotic cell death in the absence of DNA fragmentation and α-fodrin cleavage following treatment with etoposide or doxorubicin, but not after exposure to IR. Re-expression of caspase-3 restored DNA fragmentation and α-fodrin cleavage following drug treatment, but it did not alter the radiation-resistant phenotype of these cells. In contrast to the anticancer drugs, IR failed to induce the intrinsic death pathway in MCF-7/casp-3 cells, an event readily observed in IR-induced apoptosis of HeLa cells. Although IR-induced DNA double-strand breaks were repaired with similar efficiencies in all cell lines, cell cycle analyses revealed a persistent G2/M arrest in the two MCF-7 cell lines, but not in HeLa cells. Together, our data demonstrate that caspase-3 is required for DNA fragmentation and α-fodrin cleavage in drug-induced apoptosis and that the intrinsic death pathway is fully functional in MCF-7 cells. Furthermore, they show that the radiation-resistant phenotype of MCF-7 cells is not due to the lack of caspase-3, but is caused by the failure of IR to activate the intrinsic death pathway. We propose (1) different signaling pathways are induced by anticancer drugs and IR, and (2) IR-induced G2/M arrest prevents the generation of an apoptotic signal required for the activation of the intrinsic death pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

TNF:

tumor necrosis factor

IR:

ionizing radiation

zVAD-fmk:

benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone

PARP:

poly(ADP-ribose)polymerase

DEVD-amc:

N-acetyl-Asp-Glu-Val-Asp-7-amino-4-methylcoumarin

References

  • Ashkenazi A, Dixit VM . 1998 Science 281: 1305–1308

  • Belka C, Marini P, Lepple Wienhues A, Budach W, Jekle A, Los M, Lang F, Schulze-Osthoff K, Gulbins E, Bamberg M . 1999 Oncogene 18: 4983–4992

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B . 1998 Science 282: 1497–1501

  • Chen Q, Gong B, Almasan A . 2000 Cell Death Differ. 7: 227–233

  • Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH . 1993 Nature 362: 849–852

  • Cryns V, Yuan J . 1998 Genes Dev. 12: 1551–1570

  • Datta R, Kojima H, Banach D, Bump NJ, Talanian RV, Alnemri ES, Weichselbaum RR, Wong WW, Kufe DW . 1997 J. Biol. Chem. 272: 1965–1969

  • Droin N, Dubrez L, Eymin B, Renvoizé C, Bréard J, Dimanche-Boitrel MT, Solary E . 1998 Oncogene 16: 2885–2894

  • Dubrez L, Savoy I, Hamman A, Solary E . 1996 EMBO J. 15: 5504–5512

  • Engels IH, Stepczynska A, Stroh C, Lauber K, Berg C, Schwenzer R, Wajant H, Jänicke RU, Porter AG, Belka C, Gregor M, Schulze-Osthoff K, Wesselborg S . 2000 Oncogene 19: 4563–4573

  • Faleiro L, Kobayashi R, Fearnhead H, Lazebnik Y . 1997 EMBO J. 16: 2271–2281

  • Fan S, El-Deiry WS, Bae I, Freeman J, Jondle D, Bhatia K, Fornace Jr AJ, Magrath I, Kohn KW, O'Connor PM . 1994 Cancer Res. 54: 5824–5830

  • Fan S, Smith ML, Rivet II DJ, Duba D, Zhan Q, Kohn KW, Fornace Jr AJ, O'Connor PM . 1995 Cancer Res. 55: 1649–1654

  • Ferrari D, Stepczynska A, Los M, Wesselborg S, Schulze-Osthoff K . 1998 J. Exp. Med. 188: 979–984

  • Fisher DE . 1994 Cell 78: 539–542

  • Fuchs EJ, McKenna KA, Bedi A . 1997 Cancer Res. 57: 2550–2554

  • Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL, Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA, Lowe SW, Penninger JM, Mak TW . 1998 Cell 94: 339–352

  • Hannun YA . 1997 Blood 89: 1845–1853

  • Heenan M, Kavanagh K, Redmond A, Maher M, Dolan E, O'Neill P, Moriarty M, Clynes M . 1996 Cytotechnology 19: 237–242

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC . 1991 Science 253: 49–53

  • Jänicke RU, Lee FHH, Porter AG . 1994 Mol. Cell. Biol. 14: 5661–5670

  • Jänicke RU, Lin XY, Lee FHH, Porter AG . 1996 Mol. Cell. Biol. 16: 5245–5253

  • Jänicke RU, Ng P, Sprengart ML, Porter AG . 1998a J. Biol. Chem. 273: 15540–15545

  • Jänicke RU, Sprengart ML, Wati MR, Porter AG . 1998b J. Biol. Chem. 273: 9357–9360

  • Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME . 1995 EMBO J. 14: 5579–5588

  • Klaude M, Eriksson S, Nygren J, Ahnström G . 1996 Mutat. Res. 363: 89–96

  • Ko LJ, Prives C . 1996 Genes Dev. 10: 1054–1072

  • Kuida K, Haydar TF, Kuan C-Y, Gu Y, Taya C, Karasuyama H, Su MS-S, Rakic P, Flavell RA . 1998 Cell 94: 325–337

  • Kuida K, Zheng TS, Na S, Kuan C-Y, Yang D, Karusuyama H, Rakic P, Flavell RA . 1996 Nature 384: 368–372

  • Lee Y-J, Shacter E . 1999 J. Biol. Chem. 274: 19792–19798

  • Lehnert S, Greene D, Batist G . 1989 Radiat. Res. 118: 568–580

  • Levenson AS, Jordan VC . 1997 Cancer Res. 57: 3071–3078

  • Levine AJ . 1997 Cell 88: 323–331

  • Li F, Srinivasan A, Wang Y, Armstrong RC, Tomaselli KJ, Fritz LC . 1997a J. Biol. Chem. 272: 30299–30305

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X . 1997b Cell 91: 479–489

  • Lowe SW, Ruley HE, Jacks T, Housman DE . 1993 Cell 74: 957–967

  • Martins LM, Kottke T, Mesner PW, Basi GS, Sinha S, Frigon Jr N, Tatar E, Tung JS, Bryant K, Takahashi A, Svingen PA, Madden BJ, McCormick DJ, Earnshaw WC, Kaufmann SH . 1997 J. Biol. Chem. 272: 7421–7430

  • Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM . 1996 Cell 85: 817–827

  • Nicholson DW, Thornberry NA . 1997 Trends Biochem. Sci. 8: 299–306

  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C . 1991 J. Immunol. Methods 139: 271–279

  • Oshita F, Fujiwara Y, Saijo NJ . 1992 Cancer Res. Clin. Oncol. 119: 28–34

  • Porter AG, Jänicke RU . 1999 Cell Death Differ. 6: 99–104

  • Porter AG, Ng P, Jänicke RU . 1997 BioEssays 19: 501–507

  • Sabbatini P, Han J, Chiou SK, Nicholson DW, White E . 1997 Cell Growth Diff. 8: 643–653

  • Schmitt CA, Lowe SW . 1999 J. Pathol. 187: 127–137

  • Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P, Green DR . 2000 J. Biol. Chem. 275: 7337–7342

  • Simizu S, Takada M, Umezawa K, Imoto M . 1998 J. Biol. Chem. 273: 26900–26907

  • Sionov RV, Haupt Y . 1999 Oncogene 18: 6145–6157

  • Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ . 1999 J. Cell. Biol. 144: 281–292

  • Soengas MS, Alarcón RM, Yoshida H, Giaccia AJ, Hakem R, Mak TW, Lowe SW . 1999 Science 284: 156–159

  • Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, Herman JG, Gerald WL, Lazebnik YA, Cordon-Cardo C, Lowe SW . 2001 Nature 409: 207–211

  • Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Litwack G, Alnemri ES . 1996 Proc. Natl. Acad. Sci. USA 93: 14486–14491

  • Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D, Ghayur T, Brady KD, Wong WW . 1997 J. Biol. Chem. 272: 9677–9682

  • Thornberry NA, Lazebnik Y . 1998 Science 281: 1312–1316

  • Van de Craen M, Loo GV, Pype S, Criekinge WV, Van den Brande I, Molemans F, Fiers W, Declercq W, Vandenabeele P . 1998 Cell Death Diff. 5: 838–846

  • Vander Heiden MG, Thompson CB . 1999 Nature Cell Biol. 1: E209–E216

  • Vassault A . 1983 In Methods of Enzymatic Analysis Bergmeyer, HU (ed) Verlag Chemie, Basel, Switzerland pp. 118–126

    Google Scholar 

  • Wang YJ . 1998 Curr. Opin. Cell Biol. 10: 240–247

  • Wertz IE, Hanley MR . 1996 Trends Biochem. Sci. 21: 359–364

  • Wesselborg S, Engels IH, Rossmann E, Los M, Schulze-Osthoff K . 1999 Blood 93: 3053–3063

  • Woo M, Hakem R, Soengas MS, Duncan GS, Shahinian A, Kägi D, Hakem A, McCurrach M, Khoo W, Kaufman SA, Senaldi G, Howard T, Lowe SW, Mak TW . 1998 Genes Dev. 12: 806–819

  • Yu Y, Little JB . 1998 Cancer Res. 58: 4277–4281

  • Zhan Q, Fan S, Bae I, Guillouf C, Liebermann DA, O'Connor PM, Fornace Jr AJ . 1994 Oncogene 9: 3743–3751

  • Zheng TS, Schlosser SF, Dao T, Hingorani R, Crispe N, Boyer JL, Flavell RA . 1998 Proc. Natl. Acad. Sci., USA 95: 13618–13623

Download references

Acknowledgements

We thank Alwin Teo for his help with the cell cycle analysis and Mr Hwang (Physics Department, National University of Singapore) for the use of the gamma chamber. This work was funded by the Institute of Molecular and Cell Biology, the Deutsche Krebshilfe and the Deutsch-Israelische Projektkoordination (DIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiner U Jänicke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jänicke, R., Engels, I., Dunkern, T. et al. Ionizing radiation but not anticancer drugs causes cell cycle arrest and failure to activate the mitochondrial death pathway in MCF-7 breast carcinoma cells. Oncogene 20, 5043–5053 (2001). https://doi.org/10.1038/sj.onc.1204659

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204659

Keywords

This article is cited by

Search

Quick links