Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Differential post-translational modification of the tumour suppressor proteins Rb and p53 modulate the rates of radiation-induced apoptosis in vivo

Abstract

Ionizing radiation induces p53-dependent apoptosis in the spleen, providing a model system to study p53 regulated events in a normal cell type. We have developed an in vivo model that identifies genetic differences in the regulation of p53-mediated apoptosis and addresses whether altered post-translational events in the p53–p21/Rb axis modulate the sensitivity of cells to radiation-induced cell death in vivo. Splenocytes from mice with distinct genetic backgrounds (DBA/2 and C57BL/6) exhibit differences in the rate of apoptosis. Whilst no obvious strain differences in protein levels of Bcl-2 or the cyclin-CDKs were observed, early post-translational regulatory events in the p53–p21/Rb axis showed striking differences in the two mouse strains. Cells from C57BL/6 animals undergo more rapid apoptosis after irradiation resulting from elevated levels and rapid induction of p53, pronounced Rb-cleavage, and the absence of a sustained induction of p21. In contrast, cells from DBA/2 animals have a reduced rate of apoptosis following irradiation with elevated levels of hyperphosphorylated Rb and a sustained induction of the p21 protein that is coincident with the C-terminal phosphorylation of p53. These data suggest that quantitative differences in the level of p21 protein can affect the rate of apoptosis in vivo, consistent with the view that p21 is an anti-apoptotic effector of p53. However, striking differences in the Rb protein–caspase cleavage or hyperphosphorylation–in the same cell type, but in different genetic backgrounds, demonstrates that p53-dependent apoptosis can be modulated in vivo by genetic factors that impinge upon the pro- or anti-apoptotic potential of Rb. In addition, we show that Rb cleavage is p53-dependent and that its phosphorylation status can be uncoupled from p21 expression. This study highlights the possibility that genetic factors can be identified that affect differential sensitivity of cells to ionizing radiation in vivo

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 3
Figure 2
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Almasan A, Yin Y, Kelly RE, Lee EY, Bradley A, Li W, Bertino JR, Wahl GM . 1995 Proc. Natl. Acad. Sci. USA 92: 5436–5440

  • An B, Dou QP . 1996 Cancer Res. 56: 438–442

  • An B, Jin JR, Lin P, Dou QP . 1996 FEBS Lett. 399: 158–162

  • Asada M, Yamada T, Ichijo H, Delia D, Miyazono K, Fukumuro K, Mitzutani S . 1999 EMBO J. 18: 1223–1234

  • Ball KL . 1997 Prog. Cell Cycle Res. 3: 125–134

  • Ball KL, Lane DP . 1996 Eur. J. Biochem. 237: 854–861

  • Ball KL, Lain S, Fahraeus R, Smythe C, Lane DP . 1997 Curr. Biol. 7: 71–80

  • Blaydes JP, Hupp TR . 1998 Oncogene 17: 1045–1052

  • Blaydes JP, Craige AL, Wallace M, Traynor NJ, Gibbs NK, Hupp TR . 2000 Oncogene 19: 3829–3839

  • Boutillier AL, Trinh E, Loeffler JP . 2000 Oncogene 19: 2171–2178

  • Bouvard V, Zaitchouk T, Vacher M, Duthu A, Canivet M, Choisy-Rossi C, Nieruchalski M, May E . 2000 Oncogene 19: 649–660

  • Bowen C, Spiegel S, Gelmann EP . 1998 Cancer Res. 58: 3275–3281

  • Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B . 1999 J. Clin. Invest. 104: 263–269

  • Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH . 1993 Nature 362: 849–852

  • Day ML, Foster RG, Day KC, Zhao X, Humphrey P, Swanson P, Postigo AA, Zhang SH, Dean DC . 1997 J. Biol. Chem. 272: 8125–8128

  • Dou QP, An B, Antoku K, Johnson DE . 1997 J. Cell. Biochem. 64: 586–594

  • Dou QP, An B, Will PL . 1995 Proc. Natl. Acad. Sci. USA 92: 9019–9023

  • Dou QP, Lui VW . 1995 Cancer Res. 55: 5222–5225

  • Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW, Elledge SJ, Reed SI . 1994 Cell 76: 1013–1023

  • el-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y . 1994 Cancer Res. 54: 1169–1174

  • Esposito F, Russo L, Russo T, Cimino F . 2000 FEBS Lett. 470: 211–215

  • Fan G, Ma X, Kren BT, Steer CJ . 1996 Oncogene 12: 1909–1919

  • Fiscella M, Zhang H, Fan S, Sakaguchi K, Shen S, Mercer WE, Vande Woude GF, O'Connor PM, Apella E . 1997 Proc. Natl. Acad. Sci. USA 94: 6048–6053

  • Fredersdorf S, Milne AW, Hall PA, Lu X . 1996 Am. J. Pathol. 148: 825–835

  • Freemerman AJ, Vrana JA, Tombes RM, Jiang H, Chellappan SP, Fisher PB, Grant S . 1997 Leukemia 11: 504–513

  • Gervais JL, Seth P, Zhang H . 1998 J. Biol. Chem. 273: 19207–19212

  • Gorospe M, Cirielli C, Wang X, Seth P, Capogrossi MC, Holbrook NJ . 1997 Oncogene 14: 929–935

  • Gorospe M, Wang X, Guyton KZ, Holbrook NJ . 1996 Mol. Cell Biol. 16: 6654–6660

  • Gottlieb E, Oren M . 1998 EMBO J. 17: 3587–3596

  • Haas-Kogan DA, Kogan SC, Levi D, Dazin P, T'Ang A, Fung YK, Israel MA . 1995 EMBO J. 14: 461–472

  • Harbour JW, Dean DC . 2000 Nat. Cell. Biol. 2: E65–E67

  • Haupt Y, Rowan S, Oren M . 1995 Oncogene 10: 1563–1571

  • Hupp TR, Lane DP . 1994 Curr. Biol. 4: 865–875

  • Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B . 1991 Science 252: 1708–1711

  • Knudsen KE, Weber E, Arden KC, Cavenee WK, Feramisco JR, Knudsen ES . 1999 Oncogene 18: 5239–5245

  • Komarova EA, Christov K, Faerman AI, Gudkov AV . 2000 Oncogene 19: 3791–3798

  • Lees E . 1995 Curr. Opin. Cell. Biol. 7: 773–780

  • Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T . 1993 Nature 362: 847–850

  • Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K, Vogelstein B, Jacks T . 1995 Genes Dev. 9: 935–944

  • Merritt AJ, Potten CS, Kemp CJ, Hickman JA, Balmain A, Lane DP, Hall PA . 1994 Cancer Res. 54: 614–617

  • Midgley CA, Owens B, Briscoe CV, Thomas DB, Lane DP, Hall PA . 1995 J. Cell Sci. 108: 1843–1848

  • Mittnacht S . 1998 Curr. Opin. Genet. Dev. 8: 21–27

  • Mittnacht S, Lees JA, Desai D, Harlow E, Morgan DO, Weinberg RA . 1994 EMBO J. 13: 118–127

  • Miyashita T, Reed JC . 1995 Cell 80: 293–299

  • Morana SJ, Wolf CM, Li J, Reynolds JE, Brown MK, Eastman A . 1996 J. Biol. Chem. 271: 18263–18271

  • Muschel RJ, Soto DE, McKenna WG, Bernhard EJ . 1998 Oncogene 17: 3359–3363

  • Nomura T . 1982 Nature 296: 575–577

  • Nomura T, Kinuta M, Hongyo T, Nakajima H, Hatanaka T . 1992 J. Radiat Res. (Tokyo) 33: 109–123

  • Oren M . 1999 J. Biol. Chem. 274: 36031–36034

  • Park JA, Kim KW, Kim SI, Lee SK . 1998 Eur. J. Biochem. 257: 242–248

  • Roderick TH . 1963 Radiation research 20: 631–639

  • Sherr CJ, Roberts JM . 1999 Genes Dev. 13: 1501–1512

  • Somasundaram K . 2000 Front Biosci. 5: D424–D437

  • Strasser A, Harris AW, Jacks T, Cory S . 1994 Cell 79: 329–339

  • Suzuki A, Tsutomi Y, Miura M, Akahane K . 1999 Oncogene 18: 1239–1244

  • Tan X, Martin SJ, Green DR, Wang JYJ . 1997 J. Biol. Chem. 272: 9613–9616

  • Tan X, Wang JY . 1998 Trends Cell. Biol. 8: 116–120

  • Tian H, Wittmack EK, Jorgensen TJ . 2000 Cancer Res. 60: 679–684

  • Waldman T, Kinzler KW, Vogelstein B . 1995 Cancer Res. 55: 5187–5190

  • Waldman T, Zhang Y, Dillehay L, Yu J, Kinzler K, Vogelstein B, Williams J . 1997 Nat. Med. 3: 1034–1036

  • Wang H, Grand RJ, Milner AE, Armitage RJ, Gordon J, Gregory CD . 1996 Oncogene 13: 373–379

  • Wang J, Guo K, Wills KN, Walsh K . 1997 Cancer Res. 57: 351–354

  • Watson GE, Lorimore SA, Clutton SM, Kadhim MA, Wright EG . 1997 Int. J. Radiat. Biol. 71: 497–503

  • Weil MM, Zia X, Lin Y, Stephens LC, Amos CI . 1997 Genomics 45: 626–628

  • Whitaker LL, Hansen MF . 1997 Oncogene 15: 1069–1077

  • Wilson JW, Pritchard DM, Hickman JA, Potten CS . 1998 Am. J. Pathol. 153: 899–909

  • Wyllie AH, Kerr JF, Currie AR . 1980 Int. Rev. Cytol. 68: 251–306

  • Xiong Y, Zhang H, Beach D . 1992 Cell 71: 505–514

Download references

Acknowledgements

M Wallace is supported by the Cancer Research Campaign, PJ Coates and EG Wright are supported by grants from the Medical Research Council, and KL Ball holds a Senior Cancer Research Fellowship from the Cancer Research Campaign.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallace, M., Coates, P., Wright, E. et al. Differential post-translational modification of the tumour suppressor proteins Rb and p53 modulate the rates of radiation-induced apoptosis in vivo. Oncogene 20, 3597–3608 (2001). https://doi.org/10.1038/sj.onc.1204496

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204496

Keywords

This article is cited by

Search

Quick links