Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Ectopic expression of cyclin D1 amplifies a retinoic acid-induced mitochondrial death pathway in breast cancer cells

Abstract

All-trans retinoic acid inhibits growth associated with downregulation of cyclin D1 and can cause low level apoptosis in estrogen receptor positive breast cancer cell lines. The cyclin D1 gene is amplified and/or the protein overexpressed in about one-third of breast cancers. Constitutive expression of cyclin D1 in estrogen receptor positive MCF-7 and ZR-75 breast cancer cells (MCF-7(cycD1) and ZR-75(cycD1)) Increased the fraction of cells in S phase and reduced the G1 accumulation following retinoic acid treatment compared with control cells. However, culture of MCF-7(cycD1) with 1 μM all-trans retinoic acid resulted in about threefold greater growth inhibition compared with vector-transfected cells. Hoechst staining of DNA and in situ DNA end-labeling analysis indicated that MCF-7(cycD1) and ZR-75(cycD1) cultures contained 4–6-fold more retinoic acid-induced apoptotic nuclei as vector-transfected cells. Retinoic acid treatment of vector-transfected clones resulted in Bax protein activation as assessed by exposure of the NH2-terminus of Bax but the proportion of cells containing activated Bax was increased in cyclin D-expressing cells treated with retinoic acid. The latter cells also displayed both immunocytochemical and biochemical evidence of translocation of cytochrome c into the cytosol following RA-treatment. Retinoic acid markedly decreased the Bcl-2 levels in MCF-7 and ZR-75 cells. Accordingly, coexpression of Bcl-2 and cyclin D1 rendered the cells resistant to retinoic acid-induced apoptosis. We conclude that constitutive expression of cyclin D1 sensitizes ER-positive breast cancer cells to a retinoic acid-induced mitochondrial death pathway involving Bax activation, cytochrome c release and caspase-9 cleavage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Adams JM, Cory S . 1998 Science 281: 1322–1326

  • Ashkenazi A, Dixit VM . 1999 Curr. Opin. Cell Biol. 11: 255–260

  • Bardon S, Razanamahefa L . 1998 Int. J. Oncol. 12: 355–359

  • Chao DT, Korsmeyer SJ . 1998 Annu. Rev. Immunol. 16: 395–419

  • Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM . 1997 Cell 90: 569–578

  • Chen C, Okayama H . 1987 Mol. Cell. Biol. 7: 2745–2752

  • Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC . 1999 J. Cell Biol. 144: 891–901

  • Eck KM, Yuan L, Duffy L, Ram PT, Ayettey S, Chen I, Cohn CS, Ree-Hill SM . 1998 Br. J. Cancer 77: 2129–2137

  • Elstener E, Muller C, Koshizuka K, Williamson EA, Park D, Asou H, Shintaku P, Said JW, Heber D, Koeffler HP . 1998 Proc. Natl. Acad. Sci. USA 95: 8806–8811

  • Evan GI, Wyllie AG, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC . 1992 Cell 69: 119–128

  • Fliss H, Gattinger D . 1996 Circ. Res. 79: 949–956

  • Gianni M, Ponzanelli I, Mologni L, Reichert U, Rambaldi A, Terao M, Garattini E . 2000 Cell Death Differ. 7: 447–460

  • Glass CK, Rosenfeld MG, Rose DW, Kurokawa R, Kamei Y, Xu L, Torchia J, Ogliastro M-H, Westin S . 1997 Biochem. Soc. Trans. 25: 602–605

  • Green A, Shilkaitis A, Christov K . 1999 Carcinogenesis 20: 1535–1540

  • Gross A, McDonnell JM, Korsmeyer SJ . 1999 Genes Dev. 18: 1899–1911

  • Gudas LJ . 1992 Cell Growth Differ. 3: 655–662

  • Hakem A, Sasaki T, Kozieradzki I, Penninger JM . 1999 J. Exp. Med. 189: 957–968

  • Hsu YT, Wolter KG, Youle RJ . 1997 Proc. Natl. Acad. Sci. USA 94: 3668–3672

  • Hsu YT, Youle RJ . 1997 J. Biol. Chem. 272: 13829–13834

  • Juin P, Hueber AO, Littlewood T, Evan G . 1999 Genes Dev. 13: 1367–1381

  • Kastner P, Mark M, Chambon P . 1995 Cell 8: 859–869

  • Kelekar A, Thompson CB . 1998 Trends Cell Biol. 8: 324–330

  • Korzus E, Torchia J, Rose DW, Xu L, Kurokawa R, McInerney EM, Mullen TM, Glass CK, Rosenfeld MG . 1998 Science 279: 703–707

  • Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie Z, Deveraux QL, Salvesen GS, Bresden DE, Rosenthal RE, Fiskum G, Reed JC . 1999 Proc. Natl. Acad. Sci. USA 96: 5752–5757

  • Kurokawa R, Kalafus D, Ogliastro MH, Kioussi C, Xu L, Torchia J, Rosenfeld M, Glass CK . 1998 Science 279: 700–703

  • Lammie GA, Fantl V, Smith R, Schuuring E, Brookes S, Michlides R, Dickson C, Arnold A, Peters G . 1991 Oncogene 6: 439–444

  • Li H, Zhu H, Xu CJ, Yuan J . 1998 Cell 94: 491–501

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X . 1997 Cell 91: 479–489

  • Lippman ME . 1985 Endocrine responsive cancers of man. In Williams RH (ed). Textbook of Endocrinology W. B. Saunder Co.: Philadelphia pp. 1309–1326

    Google Scholar 

  • Lippman SM, Lotan R . 2000 J. Nutr. 130: 479S–482S

  • Liu Y, Lee MO, Wang HG, Li Y, Hashimoto Y, Klaus M, Reed JC, Zhang XK . 1996 Mol. Cell. biol. 16: 1138–1149

  • Mangiarotti R, Danova M, Alberici R, Pillicciari C . 1998 Br. J. Cancer 77: 186–191

  • Manna SK, Aggarwal BB . 2000 Oncogene 10: 2110–2119

  • Meier CA . 1997 J. Recept. Signal Transduct. Res. 17: 319–335

  • Moon RC, Mehta RG, Detrisac CJ . 1992 Cancer Detec. Prev. 16: 73–79

  • Murphy KM, Streips UN, Lock RB . 2000 J. Biol. Chem. 275: 17225–17228

  • Nagy L, Thomazy VA, Heyman RA, Davies PJ . 1998 Cell Death Differ. 5: 11–19

  • Oh Y, Gueev Z, Ng L, Muller HL, Rosenfeld RG . 1995 Prog. Growth Factor Res. 6: 503–512

  • Oswald F, Lovec H, Moroy T, Lipp M . 1994 Oncogene 9: 2029–2036

  • Qin XQ, Livingston DM, Kaelin WG, Adams PD . 1994 Proc. Natl. Acad. Sci. USA 91: 10918–10922

  • Raffo P, Emionite L, Colucci L, Belmondo F, Moro MG, Bollag W, Toma S . 2000 Anticancer Res. 20: 1535–1543

  • Rao L, Debbas M, Sabbatini P, Hockenbery D, Korsmeyer S, White E . 1992 Proc. Natl. Acad. Sci. USA 89: 7742–7746

  • Reed JC . 1998 Oncogene 17: 3225–3236

  • Roman SD, Clarke CL, Hall RE, Alexander IE, Sutherland RL . 1992 Cancer Res. 52: 2236–2242

  • Salo S, Hanada M, Bodurug S, Irie S, Iwama N, Boise LH, Thompson CB, Golemis E, Fong L, Wang HG, Reed JC . 1994 Proc. Natl. Acad. Sci. USA 91: 923–932

  • Schmidt EV . 1996 BioEssays 18: 6–8

  • Sedlak TW, Oltvai ZN, Yang E, Wang K, Boise LH, Thompson CB, Korsmeyer SJ . 1995 Proc. Natl. Acad. Sci. USA 92: 7834–7838

  • Seewaldt VL, Kim JH, Caldwell LE, Johnson BS, Swisshelm K, Collins SJ . 1997 Cell Growth Differ. 8: 631–641

  • Seewaldt VL, Kim JH, Parker MB, Dietze EC, Srinivasan KV, Caldwell LE . 1999 Exp. Cell Res. 249: 70–85

  • Seewaldt VL, Johnson BS, Parker MB, Collins SJ, Swisshelm K . 1995 Cell Growth Differ. 6: 1077–1088

  • Sgambato A, Han EK, Zhang YJ, Moon RC, Santella RM, Weinstein I . 1995 Carcinogenesis 16: 2193–2198

  • Shang Y, Baumrucker CR, Green MH . 1999 J. Biol. Chem. 274: 18005–18010

  • Shi L, Nishuika WK, Th’ng J, Bradbury EM, Litchfield DW, Greenberg AH . 1994 Science 263: 1143–1145

  • Slee E, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang H-G, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ . 1999 J. Cell Biol. 144: 281–292

  • Sofer-Levi Y, Resnitzky D . 1996 Oncogene 13: 2431–2437

  • Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen C, McKenna NJ, Onate SA, Tsai SY, Tsai M-J, O'Malley B . 1997 Nature 389: 194–198

  • Spinella MJ, Freemantle SJ, Sekula D, Chang JH, Christie AJ, Dmitrovsky E . 1999 J. Biol. Chem. 274: 22013–22018

  • Sukumar S, McKenzie K, Chen Y . 1995 Mutat. Res. 333: 37–44

  • Teixeira C, Pratt MAC . 1997 Mol. Endocrinol. 11: 1191–1202

  • Vander Burg B. van der Leede B-JM. Kwakkenbos-Isbrucker L, Salverda S, de Kaat SW, van der Saag PT . 1992 Mol. Cell. Endocrinol. 91: 149–157

  • Wang Q, Yang W, Uytingco MS, Christakos S, Wieder R . 2000 Cancer Res. 60: 2040–2048

  • Zhang D, Holmes WF, Wu S, Soprano DR, Soprano KJ . 2000 J. Cell. Physiol. 185: 1–20

  • Zhou Q, Stetler-Stevenson M, Steeg PS . 1997 Oncogene 15: 107–115

  • Zwijsen RML, Klompmaker R, Wientjens EBHGM, Kristel PMP, Van Der Burg B, Michalides RJAM . 1996 Mol. Cell. Biol. 16: 2554–2560

Download references

Acknowledgements

Supported by grants 98-B062 from the American Institute for Cancer Research to MAC Pratt and NIH-Gm60554 to JC Reed.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, MY., Ménard, M., Reed, J. et al. Ectopic expression of cyclin D1 amplifies a retinoic acid-induced mitochondrial death pathway in breast cancer cells. Oncogene 20, 3506–3518 (2001). https://doi.org/10.1038/sj.onc.1204453

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204453

Keywords

This article is cited by

Search

Quick links