Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Retinoic acid activates p53 in human embryonal carcinoma through retinoid receptor-dependent stimulation of p53 transactivation function

Abstract

Although retinoids are known to regulate gene transcription by activating retinoid receptors, the targets of retinoid receptors are largely unknown. This study indicates effective all-trans retinoic acid (RA)-induced differentiation of human embryonal carcinoma cells engages p53. Unexpectedly, RA has been found to activate the transactivation function of p53 in the human embryonal carcinoma cell line, NT2/D1, in a retinoid receptor-dependent manner. A derived RA-resistant line, NT2/D1-R1, is deficient in this activity and is co-resistant to cisplatin. This indicates that RA and cisplatin responses may share a common pathway involving p53 in embryonal carcinomas. RA has no effect on p53 steady-state protein levels in either line. RA enhances endogenous p53 transactivation activity in NT2/D1 but not NT2/D1-R1 cells. In addition, RA induces transactivation activity of a gal4-p53 fusion protein, suggesting that RA activates p53 independent of increasing p53 levels or sequence-specific DNA binding. This activity is absent in retinoic acid receptor γ (RARγ)-deficient NT2/D1-R1 cells but can be restored upon co-transfection with specific RARs. Transient transfection of a dominant-negative p53 construct in NT2/D1 cells blocks the RA-mediated transcriptional decline of a differentiation-sensitive reporter plasmid and enhances survival of NT2/D1 cells following cisplatin treatment. Taken together, these findings indicate that RA activates the intrinsic activation function of p53 by a novel mechanism independent of effects on p53 stability or DNA binding and that this activation may be a general mechanism that contributes to RA-mediated G1 arrest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 6
Figure 5
Figure 7

Similar content being viewed by others

References

  • Allemand I, Anglo A, Jeantet AY, Cerutti I, May E . 1999 Oncogene 18: 6521–6530

  • Andrews PW . 1998 APMIS 106: 158–168

  • Armstrong RB, Ashenfelter KO, Eckhoff C, Levin AA, Shapiro SS . 1994 The Retinoids, Biology, Chemistry and Medicine. Sporn MB, Roberts AB and Goodman DS. (eds). Raven Press, Ltd: New York pp. 545–572

    Google Scholar 

  • Arriola EL, Rodriguez-Lopez AM, Hickman JA, Chresta CM . 1999 Oncogene 18: 1457–1464

  • Boersma AW, Nooter K, Burger H, Kortland CJ, Stoter G . 1997 Cytometry 27: 275–282

  • Boyle JO, Lonardo F, Chang JH, Klimstra D, Rusch V, Dmitrovsky E . 2001 Clin. Cancer Res. 7: 259–266

  • Burger H, Nooter K, Boersma AW, Kortland CJ, Stoter G . 1997 Int. J. Cancer 73: 592–599

  • Burger H, Nooter K, Boersma AW, van Wingerden KE, Looijenga LHJ, Jochemsen AG, Stoter G . 1999 Int. J. Cancer 81: 620–628

  • Chaganti RS, Houldsworth J . 2000 Cancer Res. 60: 1475–1482

  • Chambon P . 1996 FASEB J. 10: 940–954

  • Choi J, Donehower LA . 1999 Cell. Mol. Life Sci. 55: 38–47

  • Chresta CM, Masters JR, Hickman JA . 1996 Cancer Res. 56: 1834–1841

  • Collins MD, Mao GE . 1999 Annu. Rev. Pharmacol. Toxicol. 39: 399–430

  • Dmitrovsky E, Bosl GJ, Chaganti RS . 1990 Cancer Surv. 9: 369–386

  • El-Deiry WS . 1998 Semin. Cancer Biol. 8: 345–357

  • Guchelaar HJ, Timmer-Bosscha H, Dam-Meiring A, Uges DR, Oosterhuis JW, de Vries EG, Mulder NH . 1993 Int. J. Cancer 55: 442–447

  • Hall PA, Lane DP . 1997 Curr. Biol. 7: R144–R147

  • Hall SR, Campbell LE, Meek DW . 1996 Nucleic Acids Res. 24: 1119–1126

  • Harvey M, McArthur M, Montgomery C, Bradley A, Donehower LA . 1993 FASEB J. 7: 938–943

  • Hecker D, Page G, Lohrum M, Weiland S, Scheidtmann KH . 1996 Oncogene 12: 953–961

  • Heimdal K, Lothe RA, Lystad S, Holm R, Fossa SD, Borresen AL . 1993 Genes Chromosomes Cancer 6: 92–97

  • Hermeking H, Eick D . 1994 Science 265: 2091–2093

  • Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW . 2000 Science 287: 1824–1827

  • Hong WK, Wittes RE, Hajdu ST, Cvitkovic E, Whitmore WF, Golbey RB . 1977 Cancer 40: 2987–2991

  • Houldsworth J, Xiao H, Murty VV, Chen WY, Ray B, Reuter VE, Bosl GJ, Chaganti RS . 1998 Oncogene 16: 2345–2349

  • Hussain SP, Harris CC . 1998 Cancer Res. 58: 4023–4037

  • International Testicular Cancer Linkage Consortium . 1998 APMIS 106: 64–72

  • Jetten AM, Jetten ME . 1979 Nature 278: 180–182

  • Kitareewan S, Spinella MJ, Allopenna J, Reczek PR, Dmitrovsky E . 1999 Oncogene 18: 5747–5755

  • Levine AJ . 1997 Cell 88: 323–331

  • Liu M, Iavarone A, Freedman LP . 1996 J. Biol. Chem. 271: 31723–31728

  • Lutzker SG . 1998 APMIS 106: 85–89

  • Lutzker SG, Levine AJ . 1996 Nat. Med. 2: 804–810

  • Maerz WJ, Baselga J, Reuter VE, Mellado B, Myers ML, Bosl GJ, Spinella MJ, Dmitrovsky E . 1998 Oncogene 17: 761–767

  • Mangelsdorf DJ, Umesono K, Evans RM . 1994 The Retinoids: Biology, Chemistry, and Medicine. Sporn MB, Roberts AB and Goodman DS. (eds). Raven Press, Ltd: New York pp. 319–349

    Google Scholar 

  • Matin A, Collin GB, Varnum DC, Nadeau JH . 1998 APMIS 106: 174–182

  • Meek DW . 1999 Oncogene 18: 7666–7675

  • Miller Jr WH, Moy D, Li A, Grippo JF, Dmitrovsky E . 1990 Oncogene 5: 511–517

  • Miller Jr WH, Maerz WJ, Kurie J, Moy D, Baselga J, Lucas DA, Grippo JF, Masui H, Dmitrovsky E . 1994 Differentiation 55: 145–152

  • Moasser MM, DeBlasio A, Dmitrovsky E . 1994 Oncogene 9: 833–840

  • Moasser MM, Reuter VE, Dmitrovsky E . 1995 Oncogene 10: 1537–1543

  • Moasser MM, Khoo KS, Maerz WJ, Zelenetz A, Dmitrovsky E . 1996 Differentiation 60: 251–257

  • Oren M . 1999 J. Biol. Chem. 274: 36031–36034

  • Ossovskaya VS, Mazo IA, Chernov MV, Chernova OB, Strezoska Z, Kondratov R, Stark GR, Chumakov PM, Gudkov AV . 1996 Proc. Natl. Acad. Sci. USA 93: 10309–10314

  • Nason-Burchenal K, Dmitrovsky E . 1999 Retinoids: Handbook of Experimental Pharmacology. Nau H and Blaner WS. (eds) Springer-Verlag: Berlin pp. 301–322

    Book  Google Scholar 

  • Peng HQ, Hogg D, Malkin D, Bailey D, Gallie BL, Bulbul M, Jewett M, Buchanan J, Goss PE . 1993 Cancer Res. 53: 3574–3578

  • Pera MF, Roach S, Elliss CJ . 1990 Cancer Surv. 9: 243–262

  • Riou G, Barrois M, Prost S, Terrier MJ, Theodore C, Levine AJ . 1995 Mol. Carcinog. 12: 124–131

  • Schottenfeld D, Warshauer ME, Sherlock S, Zauber AG, Leder M, Payne R . 1980 Am. J. Epidemiol. 112: 232–246

  • Schwartz D, Goldfinger N, Kam Z, Rotter V . 1999 Cell Growth Differ. 10: 665–675

  • Shang Y, Baumrucker CE, Green MH . 1999 J. Biol. Chem. 274: 18005–18010

  • Sherr CJ, Weber JD . 2000 Curr. Opin. Gent. Dev. 10: 94–99

  • Shin DM, Xu XC, Lippman SM, Lee JJ, Lee JS, Batsakis JG, Ro JY, Martin JW, Hittelman WN, Lotan R, Hong WK . 1997 Clin. Cancer Res. 3: 875–880

  • Shin DM, Mao L, Papadimitrakopoulou VM, Clayman G, El-Naggar A, Shin HJ, Lee JJ, Lee JS, Gillenwater A, Myers J, Lippman SM, Hittelman WN, Hong WK . 2000 J. Natl. Cancer Inst. 92: 69–73

  • Spinella MJ, Kitareewan S, Mellado B, Sekula D, Khoo KS, Dmitrovsky E . 1998 Oncogene 16: 3471–3480

  • Spinella MJ, Freemantle SJ, Sekula D, Chang JH, Christie AJ, Dmitrovsky E . 1999 J. Biol. Chem. 274: 22013–22018

  • Wadgaonkar R, Collins T . 1999 J. Biol. Chem. 274: 13760–13767

  • Yuan H, Corbi N, Basilico C, Dailey L . 1995 Genes Dev. 9: 2635–2645

  • Zamble DB, Jacks T, Lippard SJ . 1998 Proc. Natl. Acad. Sci. USA 95: 6163–6168

  • Zauberman A, Flusberg D, Haupt Y, Barak Y, Oren M . 1995 Nucleic Acids Res. 23: 2584–2592

Download references

Acknowledgements

We thank Dr Sarah Freemantle and Dr Sutisak Kitareewan for helpful discussion and Mr Jeffrey Chang for technical assistance. We thank Dr Nancy Rosenfield (Memorial Sloan Kettering Cancer Center) for providing DAOY cells. We thank Dr Moshe Oren (Weizmann Institute of Science), Dr Tucker Collins (Harvard Medical School), and Dr Bert Vogelstein (John Hopkins Medical School) for providing plasmid constructs. This work was supported by National Institute of Health R01-CA54494 (E Dmitrovsky) and R01-CA87546 (E Dmitrovsky) from the National Cancer Institute, and by the American Cancer Society grant RPG-90-019-10-DDC (E Dmitrovsky) and the National Cancer Institute Howard Temin Award K01-CA75154 (MJ Spinella) and from a grant from the Lance Armstrong Foundation (MJ Spinella). KH Dragnev was supported in part by the American Society of Clinical Oncology (ASCO) Young Investigator Award.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtin, J., Dragnev, K., Sekula, D. et al. Retinoic acid activates p53 in human embryonal carcinoma through retinoid receptor-dependent stimulation of p53 transactivation function. Oncogene 20, 2559–2569 (2001). https://doi.org/10.1038/sj.onc.1204370

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204370

Keywords

This article is cited by

Search

Quick links