Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Bax and Bcl-xL independently regulate apoptotic changes of yeast mitochondria that require VDAC but not adenine nucleotide translocator

Abstract

Mitochondria play an essential role in apoptosis by releasing apoptogenic molecules such as cytochrome c and AIF, and some caspases, which are all regulated by Bcl-2 family proteins. Pro-apoptotic Bax and Bak have been shown to induce cytochrome c release and loss of membrane potential (Δψ) leading to AIF release in the isolated mitochondria. We have previously shown that Bax and Bak open the voltage-dependent anion channel (VDAC) allowing cytochrome c to pass through the channel, and Bcl-xL closes the channel. However, it has been reported that it is adenine nucleotide translocator (ANT) with which Bax/Bcl-xL interacts that modulate the channel activity. Here, we investigated the role of ANT and VDAC in the changes of isolated mitochondria triggered by Bax and by chemicals that induce permeability transition (PT). In rat and yeast mitochondria, Bax did not affect the ADP/ATP exchange activity of ANT. VDAC-deficient but not ANT-deficient yeast mitochondria showed resistance to cytochrome c release, Δψ loss, and swelling caused by Bax and PT inducers. Bcl-xL showed similar inhibition of all these changes in ANT-deficient and wild type yeast mitochondria. Furthermore, Bax induces cytochrome c release in wild type yeast cells but not VDAC1-deficient yeast cells. These data indicate that VDAC, but not ANT, is essential for apoptotic mitochondrial changes. The data also indicate that Bcl-xL and Bax possess an ability to regulate mitochondrial membrane permeability independently of other Bcl-2 family members.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

PT:

permeability transition

AIF:

apoptosis-inducing factor

ANT:

adenine nucleotide translocator

VDAC:

voltage-dependent anion channel

GST:

glutathione S-transferase

DTBP:

Dimethyl 3, 3′-dithiobispropionimidate [2HCl]

References

  • Adams JM and Cory S. . 1998 Science 281: 1322–1326.

  • Bernardi P, Broekemeier KM and Pfeiffer DR. . 1994 J. Bioenerg. Biomembr. 26: 509–517.

  • Blanchly-Dyson E, Song J, Wolfgang WJ, Colombini M and Forte M. . 1997 Mol. Cell Biol. 17: 5727–5738.

  • Brenner C, Cadiou H, Vieira HL, Zamzami N, Marzo I, Xie Z, Leber B, Andrews D, Duclohier H, Reed JC and Kroemer G. . 2000 Oncogene 19: 329–336.

  • Brustovetsky N and Klingenberg M. . 1996 Biochemistry 35: 8483–8488.

  • Chinnaiyan AM, Orth K, Orouke K, Duan H, Poirier GG and Dixit VM. . 1996 J. Biol. Chem. 271: 4573–4576.

  • Colombini M. . 1989 J. Membr. Biol. 111: 103–111.

  • Daum G, Bohni PC and Schatz G. . 1982 J. Biol. Chem. 257: 13028–13033.

  • Drgon T, Sabova L, Gavurnikova G and Kolarov J. . 1992 FEBS lett. 304: 277–280.

  • Eskes R, Antonsson B, Osen-Sand A, Montessuit SC, Sadoul R, Mazzei G, Nichols A and Martinou JC. . 1998 J. Cell. Biol. 143: 217–224.

  • Harris MH, Vander-Heiden MG, Kron SJ and Thompson CB. . 2000 Mol. Cell Biol. 20: 3590–3596.

  • Hashimoto M, Shinohara Y, Majima E, Hatanaka T, Yamazaki N and Terada H. . 1999 Biochem. Biophys. Acta. 1409: 113–124.

  • Green DR and Reed JC. . 1998 Science 281: 1309–1312.

  • Greenhalf W, Stephan C and Chaudhuri B. . 1996 FEBS lett. 380: 169–175.

  • Gross A, Pilcher K, Blachly-Dyson E, Basso E, Jockel J, Bassik MC, Korsmeyer SJ and Forte M. . 2000 Mol. Cell Biol. 20: 3125–3136.

  • Jung DW, Bradshaw PC and Pfeiffer DR. . 1997 J. Biol. Chem. 272: 21104–21112.

  • Jürgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D and Reed JC. . 1998 Proc. Natl. Acad. Sci. USA 95: 4997–5002.

  • Kawagoe K, Takeda J, Endo Y and Kinoshita T. . 1994 Genomicss 23: 566–574.

  • Klingenberg M and Nelson DR. . 1994 Biochem. Biophys. Acta 1187: 241–244.

  • Lee AC, Xu X, Blachly-Dyson E, Forte M and Colombini M. . 1998 J. Membr. Biol. 161: 173–181.

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES and Wang X. . 1997 Cell 91: 479–489.

  • Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ, Wang X and Williams RS. . 2000 Cell 101: 389–400.

  • Marzo I, Brenner C, Zamzami N, Jürgensmeier JM, Susin SA, Vieira HL, Prevost MC, Xie Z, Matsuyama S, Reed JC and Kroemer G. . 1998 Science 281: 2027–2031.

  • Matsuyama S, Xu Q, Velours J and Reed JC. . 1998 Mol. Cell 1: 327–336.

  • Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H and Tsujimoto Y. . 1998 Proc. Natl. Acad. Sci. USA 95: 14681–14686.

  • Nelson DR, Lawson JE, Klingenberg M and Douglas MG. . 1993 J. Mol. Biol. 230: 1159–1770.

  • Nouraini S, Six E, Matsuyama S, Krajewski S and Reed JC. . 2000 Mol. Cell Biol. 20: 1604–1615.

  • Priault M, Chaudhuri B, Clow A, Camougrand N and Manon S. . 1999a Eur. J. Biochem. 260: 684–691.

  • Priault M, Camougrand N, Chaudhuri B, Schaeffer J and Manon S. . 1999b FEBS Lett. 456: 232–238.

  • Roucou X, Prescott M, Devenish RJ and Nagley P. . 2000 FEBS Lett. 471: 235–239.

  • Shimizu S, Eguchi Y, Kamiike W, Matsuda H and Tsujimoto Y. . 1996 Oncogene 12: 2251–2257.

  • Shimizu S, Eguchi Y, Kamiike W, Funahashi Y, Mignon A, Lacronique V, Matsuda H and Tsujimoto Y. . 1998 Proc. Natl. Acad. Sci. USA 95: 1455–1459.

  • Shimizu S, Narita M and Tsujimoto Y. . 1999 Nature 399: 483–487.

  • Shimizu S, Ide T, Yanagida T and Tujimoto Y. . 2000 J. Biol. Chem. 275: 12321–12325.

  • Shimizu S and Tsujimoto Y. . 2000 Proc. Natl. Acad. Sci. USA 97: 577–582.

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM and Kroemer G. . 1999 Nature 397: 441–446.

  • Thornberry NA and Lazebnilk Y. . 1998 Science 281: 1312–1316.

  • Tsujimoto Y and Shimizu S. . 2000 FEBS Lett. 466: 6–10.

  • Zoratti M and Szabó I. . 1995 Biochim. Biophys. Acta 1241: 139–176.

Download references

Acknowledgements

We are grateful to Dr G Schatz for providing anti-yeast cytochrome c antibody, Dr M Forte for VDAC1-deficient yeast (M22-2), its wild type (M3), and human vdac1 cDNA, Dr MG Douglas for ANT3-deficient yeast (WΔ3) and its wild type (M3). This study was supported in part by a grant for Scientific Research on Priority Areas, by a grant for Center of Excellence Research, and by a grant for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan, and by Special Coordination Funds for Promoting Science and Technology from the Science and Technology Agency of Japan.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, S., Shinohara, Y. & Tsujimoto, Y. Bax and Bcl-xL independently regulate apoptotic changes of yeast mitochondria that require VDAC but not adenine nucleotide translocator. Oncogene 19, 4309–4318 (2000). https://doi.org/10.1038/sj.onc.1203788

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1203788

Keywords

This article is cited by

Search

Quick links