Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Both FGF1 and Bcl-x synthesis are necessary for the reduction of apoptosis in retinal pigmented epithelial cells by FGF2: role of the extracellular signal-regulated kinase 2

Abstract

Retinal pigmented epithelial (RPE) cells are of central importance in the maintenance of neural retinal function. Changes in the RPE cells associated with repair activities have been described as metaplasia, while RPE cell apoptosis is responsible for the development of a variety of retinal degenerations. We investigated the regulation of the anti-apoptotic properties of the fibroblast growth factors (FGF) 2 in serum-free cultures of RPE cells. In the absence of serum, confluent stationary RPE cells died by apoptosis via a caspase 3-dependent pathway. The addition of FGF2 greatly reduced apoptosis over a 7-day culture period. We demonstrated the involvement of an autocrine loop involving endogenous FGF1 in the mechanisms that govern FGF2-induced resistance to apoptosis by showing: (1) higher levels of apoptosis in cells treated with antisense FGF1 oligonucleotide or after neutralization of excreted FGF1; (2) the long-term activation of FGFR1 and of ERK2, (3) the inhibition of FGFR1 and ERK2 activation and an increase in apoptosis if excreted FGF1 was neutralized. FGF2 also increased the de novo synthesis and the production of Bcl-xl before the onset of apoptosis. Both inhibition of ERK2 activation, which decreased Bcl-xl synthesis, and downregulation of Bcl-x by antisense oligonucleotide treatment inhibited the survival-promoting activity of FGF2. Thus, FGF2-induced cell survival is a progressive adaptive phenomenon involving ERK2 activation by excreted FGF1 and ERK2-dependent Bcl-x production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Abraham JA, Whang JL, Tumolo A, Mergia A, Friedman J, Gospodarowicz D and Fiddes JC. . 1986 EMBO J. 5: 2523.

  • Alterio J, Halley C, Brou C, Soussi, Courtois Y and Laurent M. . 1988 FEBS Lett. 242: 41–46.

  • Amarente-Mendes G, McGahon A, Nishioka W, Afar D, Witte O and Green D. . 1998 Oncogene 16: 1383–1390.

  • Boise L, Gonzales-Garcia M, Postela C, Ding L, Lindsten T, Turka L, Mao X, Nunez G and Thompson C. . 1993 Cell 74: 597–608.

  • Burgess WH and Maciag T. . 1989 Ann. Rev. Biochem. 58: 575–606.

  • Burgess WH, Dionne CA, Kaplow J, Mudd R, Friesel R, Zilberstein A, Schlessinger J and Jaye M. . 1990 Mol. Cell. Biol. 10: 4770–4777.

  • Carter S, Auer K, Reardon D, Birrer M, Fisher P, Valerie K, Schmidt-Ullrich R, Mikkelsen R and Dent P. . 1998 Oncogene 16: 2787–2796.

  • Chen J, Flannery JG, LaVail MM and Steinbert RH. . 1996 Proc. Natl. Acad. Sci. 93: 7042–7047.

  • Clarenc J, Lebleu B and Leonetti J. . 1993 J. Biol. Chem. 268: 5600–5604.

  • Clem R, Cheng E, Karp C, Kirsch D, Ueno K, Takahashi A, Kastan M, Griffin D, Earnshaw W, Veliuona M and Hard-wick M. . 1998 Proc. Natl. Acad. Sci. USA 95: 554–559.

  • Cleary ML, Smith SD and Sklar J. . 1986 Cell 47: 19–28.

  • Cobb MH, Bourton TG and Robbins DJ. . 1991 Cell Regul. 2: 965–978.

  • Courlier F, Pontarotti P, Roubin G, Goldfarb M and Birnbaum D. . 1997 J. Mol. Evol. 44: 43–56.

  • Davidson F and Steller H. . 1998 Nature 391: 587–590.

  • Deng G and Podack ER. . 1993 Proc. Natl. Acad. Sci. USA 90: 2189–2193.

  • Désiré L, Head M, Fayen N, Courtois Y and Jeanny JC. . 1998 Dev. Dynamics 212: 63–74.

  • Enzmann V, Faude F, Kohen L and Wiedmann P. . 1998 Ophthalmic Res. 30: 189–194.

  • Faktorovich E, Steinberg R, Yasumara D and La Vail M. . 1990 Nature 347: 83–86.

  • Fennwald S and Rando R. . 1995 J. Biol. Chem. 270: 21718–21721.

  • Fujita N, Nagashi A, Nagashima K, Rokudai S and Tsuruo T. . 1998 Oncogene 17: 1295–1304.

  • Funato N, Moriyama K, Shimokawa H and Kuroda T. . 1997 Biochem. Biophys. Res. Commun. 240: 21–26.

  • Gao H and Hollyfield JG. . 1996 Exp. Eye. Res. 62: 181–189.

  • Gardner AM and Johnson GL. . 1996 J. Biol. Chem. 14560–14571.

  • Garland J and Rudin C. . 1998 Blood 4: 1235–1246.

  • Gillardon F, Barrle J, Wickert H and Zimmerman M. . 1995 J. Neurosci. Res. 5: 708–715.

  • Givol D and Yayon A. . 1992 FASEB J. 6: 3362–3369.

  • Guillonneau X, Regnier-Ricard F, Dupuis C, Courtois Y and Mascarelli F. . 1997 Exp. Cell Res. 233: 198–206.

  • Guillonneau X, Laplace O, Regnier-Ricard F, Jonet L, Brickaert MC, Courtois Y and Mascarelli F. . 1998a Mol. Biol. Cell 9: 2785–2802.

  • Guillonneau X, Brickaert MC, Launay-Longo C, Courtois Y and Mascarelli F. . 1998b J. Biol. Chem. 273: 22367–22373.

  • Gukova M, Yakubov L, Vlodavsky I, Tonkinson J and Stein C. . 1995 J. Biol. Chem. 270: 2620–2627.

  • Hinton D, He S and Lopez F. . 1998 Arch. Ophthalmol. 116: 203–209.

  • Iseman S, Wahl C, Krajjewski S, Reed J and Bahr M. . 1997 Eur. J. Neurosci. 9: 1763–1772.

  • Jaye M, Burgess R, Ricca W, Chiu GA, Ravera IM, O'Brien MW, Modi SJ, Maciag T and Drohan WN. . 1986 Science 233: 241–244.

  • Jaye M, Schlessinger J and Dionne CA. . 1992 Biochem. Biophys. Acta 1135: 185–199.

  • König A, Menzel T, Lynen S, Wrazel L, Rosén A, Al-Katib A, Raveche E and Gabrilove JL. . 1997 Leukemia 11: 258–265.

  • Levin L, Sclamp C, Spieldoch R, Gesvain K and Nickells R. . 1997 Invest. Ophthalmol. Vis. Sci. 38: 2545–2553.

  • Lezoualc'h F, Seugnet I, Monnier AL, Ghysdael J, Behr J and Demeinex B. . (1995) J. Biol Chem. 270: 12100–12108.

  • Lindenboim L, Haviv R and Stein R. . 1998 Neurosci. Lett. 253: 37–40.

  • Liu J, Issad T, Chevet E, Ledoux D, Courty J, Caruelle J, Barritault D, Crepin M and Bertin B. . 1998 Eur. J. Biochem. 258: 271–276.

  • Liu YZ, Boxer L.M and Latchman D.S. . 1999 Nucleic Acid. Res. 27: 2086–2090

  • Malecaze F, Mascarelli F, Bugra K, Fuhrmann G, Courtois Y and Hicks D. . 1993 J. Cell Physiol. 8: 631–642.

  • Mishima K, Yamada E, Masui K, Shimokawara T, Sugimura M and Ichijima K. . 1998 Mod. Pathol. 11: 886–891.

  • Montpied R, Weller M and Paul S. . 1993 Biochem. Biophys. Res. Commun. 195: 623–629.

  • Myoken Y, Myoken Y, Okamoto T, Kan M, McKeehan W, Sato D and Takada K. . 1996 Int. J. Cancer 65: 650–657.

  • Navarro P, Valverde A, Benito M and Lorenzo M. . 1998 Exp. Cell Res. 243: 213–221.

  • Onal M and Fisher M. . 1997 Eur. Neurol. 38: 141–154.

  • Papermaster D. . 1997 Cell Death Different. 4: 21–28.

  • Partanen J, Vainakka S, Korhonen J, Armstrong E and Alitalo K. . 1992 Prog. Growth Factor Res. 4: 69–83.

  • Portera-Gailleau C, Sung C, Nathans J and Adler R. . 1994 Proc. Natl. Acad. Sci. USA 91: 974–978.

  • Raguenez G, Désiré L, Lantrua V and Courtois Y. . 1999 Biochem. Biophys. Res. Commun. 258: 745–751.

  • Renaud F, Desset S, Oliver L, Gimenez-Galleco G, Van Obberghen E, Courtois Y and Laurent M. . 1996 J. Biol. Chem. 271: 2801–2811.

  • Rifkin D and Moscatelli D. . 1989 J. Cell Biol. 109: 1–6.

  • Sahl B, Marotta A, Matthewson C, Ahluwalia M, Flint J, Owen D and Pelech S. . 1999 Anticancer Res. 19: 731–740.

  • Sato Y and Rifkin DB. . 1988 J. Cell Biol. 107: 1129–1205.

  • Shin JT, Barbeito L, MacMillan-Crow LA, Beckman JS and Thompson JA. . 1996 Arch. Biochem. Biophys. 335: 32–41.

  • Sivaraman VS, Wang H, Nuovo GJ and Malbon CC. . 1997 J. Clin. Invest. 99: 1478–1483.

  • Spear N, Estevez AG, Johnson GV, Bredesen DE, Thompson JA and Beckman JS. . 1998 Arch. Biochem. Biophys. 356: 41–45.

  • Stoll S, Benedict M, Mitra R, Hiniker A, Elder J and Nunez G. . 1998 Oncogene 16: 1493–1499.

  • Thornberry N and Lazebnick Y. . 1998 Sciences 281: 1312–1316.

  • Townsend KJ, Trusty JL, Traupman MA, Eastman A and Craig RW. . 1998 Oncogene 17: 1223–1234.

  • Vlodavski I, Arias Y, Atzman R and Fuks Z. . 1982 Exp. Cell. Res. 140: 149–159.

  • Wang Q, Maloof P, Wang H, Faenig E, Stein D, Nichols G, Denny TN, Yahalom J and Wieder R. . 1998 Exp. Cell. Res. 238: 177–187.

  • Yazlovitskaya EM, Pelling JC and Person DI. . 1999 Mol. Carcinog. 25: 14–20.

  • Yokoiyama Y, Ozawa S, Seyama Y, Namiki Y, Kaji K, Shirama K, Shioda M and Kano K. . 1997 J. Neurochem. 5: 2212–2215.

Download references

Acknowledgements

The authors wish to thank Dr JC Jeanny and Dr L Désiré for helpful suggestions. The excellent technical assistance of F Regnier-Ricard is gratefully acknowledged. This work was supported by the Association pour la Recherche sur le Cancer (contract numbers 1369 and 9697, F Mascarelli), the Ligue Nationale contre le Cancer (Comité de Paris, M Bryckaer), the Ministère de la Recherche et de l'Enseignement Supérieur (X Guillonneau) and the Universite René Descartes, Faculté de Médecine Paris-Ouest (F Mascarelli).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryckaert, M., Guillonneau, X., Hecquet, C. et al. Both FGF1 and Bcl-x synthesis are necessary for the reduction of apoptosis in retinal pigmented epithelial cells by FGF2: role of the extracellular signal-regulated kinase 2. Oncogene 18, 7584–7593 (1999). https://doi.org/10.1038/sj.onc.1203200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1203200

Keywords

This article is cited by

Search

Quick links