Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Tyrosine phosphorylation of p120cbl in BCR/abl transformed hematopoietic cells mediates enhanced association with phosphatidylinositol 3-kinase

Abstract

Increased tyrosine kinase activity of abl oncogene in Philadelphia chromosome positive-leukemic cells leads to activation of p21ras and phosphatidylinositol 3′-kinase (PI 3-Kinase). The mechanism of activation of these signaling pathways is not understood, but numerous studies have focused on the identification and characterization of downstream substrates of BCR/abl tyrosine kinase as potential mediators of oncogenic signaling. It was recently found that the 120 kDa protein product of the c-cbl proto-oncogene is highly tyrosine phosphorylated and associates with BCR/abl in transformed hematopoietic cells. We have characterized further cbl's involvement in BCR/abl mediated tumorigenesis using growth factor independent BCR/abl transformed BaF3 cells. Our experiments show that, in contrast to other cell types, the in vivo interaction of cbl with GRB2 and p85 is significantly enhanced in BCR/abl transformed BaF3 cells and that tyrosine phosphorylation of cbl leads to a direct interaction with GRB2, p85 and abl SH2 domains. A 14-fold increase in cbl associated PI 3-kinase activity in BCR/abl transformed cells suggests that the binding of p85 SH2 domains to tyrosine phosphorylated cbl may contribute to PI 3-kinase activation. Domain analysis studies indicate that both SH3 domains of GRB2 bind to the proline rich region of cbl in quiescent BaF3 cells, whereas GRB2 SH2 domain interacts with a non-contiguous sequence of cbl in transformed cells. Although the interaction of cbl with GRB2 in transformed cells was facilitated by binding of GRB2 to BCR/abl, phosphorylation of cbl and its interaction with p190 BCR/abl remained unaltered in BaF3 cells transformed by p190Y177F BCR/abl mutant which is unable to bind GRB2. The current information and the data presented here suggest that, although cbl lacks src homology domains, it represents a novel intermediate protein which, by interaction with key SH-containing adaptor proteins, may participate in regulation of the Ras and PI 3-kinase pathways in BCR/abl transformed hematopoietic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, S., Langdon, W. & Varticovski, L. Tyrosine phosphorylation of p120cbl in BCR/abl transformed hematopoietic cells mediates enhanced association with phosphatidylinositol 3-kinase. Oncogene 14, 2217–2228 (1997). https://doi.org/10.1038/sj.onc.1201049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1201049

Keywords

This article is cited by

Search

Quick links