Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Relations of left ventricular mass and systolic function to endothelial function and coronary flow reserve in healthy, new discovered hypertensive subjects

Abstract

Left ventricular hypertrophy (LVH) is prognostically relevant, associated with major cardiovascular risk factors and with atherosclerosis. However, whether LVH is independently associated with impaired coronary flow reserve (CFR) and with endothelial dysfunction is disputed. We assessed the relationship of LV mass and systolic function to CFR and endothelial function in new discovered never treated subjects with essential arterial hypertension, but without coronary artery disease or microalbuminuria. LVH, ejection fraction (EF) and stress-corrected midwall shortening (MWS, a measure of myocardial contractility) were assessed by echocardiography. CFR was assessed by single-photon emission computed tomography and dipyridamole infusion. Endothelial function was evaluated by assessing 1-min postischaemic flow-mediated dilatation of the brachial artery (FMD); nitroglycerine-mediated dilatation (NMD) of the same brachial artery was used as measure of nonendothelium-dependent vasodilatation. In approximately 1 year, we enrolled 21 subjects who met stringent inclusion criteria (47±10 years old, 26.6±2.8 kg/m2, 78% men). Five patients showed LVH. Multivariate analyses showed a significant negative correlation of LV mass index with FMD (β=−0.61, P<0.05) but not with NMD, neither with CFR. Stress-corrected MWS showed independent correlation with CFR (β=0.51, P<0.05). Thus, in clinically healthy, new discovered hypertensive subjects, never treated and mostly in the early stage of arterial hypertension, LVH can be associated with endothelial dysfunction while maximal dipyridamole- dependent CFR may be preserved; nevertheless, a cardiac phenotype presenting with tendency to impaired myocardial contractility, assessed by stress-corrected MWS, showed association with lower CFR in the early stage of arterial hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 3
Figure 1
Figure 2

Similar content being viewed by others

References

  1. Vakili BA, Okin PM, Devereux RB . Prognostic implications of left ventricular hypertrophy. Am Heart J 2001; 141: 334–341.

    Article  CAS  PubMed  Google Scholar 

  2. de Simone G et al. Midwall left ventricular mechanics. An independent predictor of cardiovascular risk in arterial hypertension. Circulation 1996; 93: 259–265.

    Article  CAS  PubMed  Google Scholar 

  3. de Simone G et al. Association of left ventricular hypertrophy with metabolic risk factors: the HyperGEN study. J Hypertens 2002; 20: 323–331.

    Article  CAS  PubMed  Google Scholar 

  4. Celermajer DS et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992; 340: 1111–1115.

    Article  CAS  PubMed  Google Scholar 

  5. Leschke M et al. Reduced peripheral and coronary vasomotion in systemic hypertension. Eur Heart J 1992; 13 (Suppl D): 96–99.

    Article  PubMed  Google Scholar 

  6. Likoff W, Segal BL, Kasparian H . Paradox of normal selective coronary arteriograms in patients considered to have unmistakable coronary heart disease. N Engl J Med 1967; 276: 1063–1067.

    Article  CAS  PubMed  Google Scholar 

  7. Strauer BE . Ventricular function and coronary hemodynamics in hypertensive heart disease. Am J Cardiol 1979; 44: 999–1006.

    Article  CAS  PubMed  Google Scholar 

  8. Wangler RD, Peters KG, Marcus ML, Tomanek RJ . Effects of duration and severity of arterial hypertension and cardiac hypertrophy on coronary vasodilator reserve. Circ Res 1982; 51: 10–18.

    Article  CAS  PubMed  Google Scholar 

  9. Marcus ML et al. Abnormalities in the coronary circulation that occur as a consequence of cardiac hypertrophy. Am J Med 1983; 75: 62–66.

    Article  CAS  PubMed  Google Scholar 

  10. Opherk D et al. Reduction of coronary reserve: a mechanism for angina pectoris in patients with arterial hypertension and normal coronary arteries. Circulation 1984; 69: 1–7.

    Article  CAS  PubMed  Google Scholar 

  11. Vogt M, Motz W, Strauer BE . Coronary haemodynamics in hypertensive heart disease. Eur Heart J 1992; 13 (Suppl D): 44–49.

    Article  PubMed  Google Scholar 

  12. Strauer BE . Myocardial oxygen consumption in chronic heart disease: role of wall stress, hypertrophy and coronary reserve. Am J Cardiol 1979; 44: 730–740.

    Article  CAS  PubMed  Google Scholar 

  13. Brush Jr JE et al. Angina due to coronary microvascular disease in hypertensive patients without left ventricular hypertrophy. N Engl J Med 1988; 319: 1302–1307.

    Article  PubMed  Google Scholar 

  14. Houghton JL et al. Relations among impaired coronary flow reserve, left ventricular hypertrophy and thallium perfusion defects in hypertensive patients without obstructive coronary artery disease. J Am Coll Cardiol 1990; 15: 43–51.

    Article  CAS  PubMed  Google Scholar 

  15. Parodi O et al. Comparative effects of enalapril and verapamil on myocardial blood flow in systemic hypertension. Circulation 1997; 96: 864–873.

    Article  CAS  PubMed  Google Scholar 

  16. Palombo C et al. Early impairment of coronary flow reserve and increase in minimum coronary resistance in borderline hypertensive patients. J Hypertens 2000; 18: 453–459.

    Article  CAS  PubMed  Google Scholar 

  17. Gimelli A et al. Homogeneously reduced versus regionally impaired myocardial blood flow in hypertensive patients: two different patterns of myocardial perfusion associated with degree of hypertrophy. J Am Coll Cardiol 1998; 31: 366–373.

    Article  CAS  PubMed  Google Scholar 

  18. Palmieri V et al. Echocardiographic wall motion abnormalities in hypertensive patients with electrocardiographic left ventricular hypertrophy: the LIFE Study. Hypertension 2003; 41: 75–82.

    Article  CAS  PubMed  Google Scholar 

  19. Alberti KG, Zimmet PZ . Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med 1998; 15: 539–553.

    Article  CAS  PubMed  Google Scholar 

  20. Palmieri V et al. Reliability of echocardiographic assessment of left ventricular structure and function: the PRESERVE study. J Am Coll Cardiol 1999; 34: 1625–1632.

    Article  CAS  PubMed  Google Scholar 

  21. Schiller NB et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 1989; 2: 358–367.

    Article  CAS  PubMed  Google Scholar 

  22. Sahn DJ, DeMaria A, Kisslo J, Weyman A . Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 1978; 58: 1072–1083.

    Article  CAS  PubMed  Google Scholar 

  23. Devereux RB et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986; 57: 450–458.

    Article  CAS  PubMed  Google Scholar 

  24. de Simone G et al. Assessment of left ventricular function by the midwall fractional shortening/end-systolic stress relation in human hypertension [erratum in J Am Coll Cardiol 1994 Sep; 24(3): 844]. J Am Coll Cardiol 1994; 23: 1444–1451.

    Article  CAS  PubMed  Google Scholar 

  25. Gaasch WH et al. Stress-shortening relations and myocardial blood flow in compensated and failing canine hearts with pressure-overload hypertrophy. Circulation 1989; 79: 872–883.

    Article  CAS  PubMed  Google Scholar 

  26. Shimizu G et al. Left ventricular midwall mechanics in systemic arterial hypertension. Myocardial function is depressed in pressure-overload hypertrophy. Circulation 1991; 83: 1676–1684.

    Article  CAS  PubMed  Google Scholar 

  27. Palmieri EA et al. Aerobic exercise performance correlates with post-ischemic flow-mediated dilation of the brachial artery in young healthy men. Eur J Appl Physiol 2005; 94: 113–117.

    Article  PubMed  Google Scholar 

  28. Corretti MC et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 2002; 39: 257–265.

    Article  PubMed  Google Scholar 

  29. Joannides R et al. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation 1995; 91: 1314–1319.

    Article  CAS  PubMed  Google Scholar 

  30. Vogel RA, Corretti MC, Plotnick GD . A comparison of brachial artery flow-mediated vasodilation using upper and lower arm arterial occlusion in subjects with and without coronary risk factors. Clin Cardiol 2000; 23: 571–575.

    Article  CAS  PubMed  Google Scholar 

  31. Sugihara H et al. Estimation of coronary flow reserve with the use of dynamic planar and SPECT images of Tc-99 m tetrofosmin. J Nucl Cardiol 2001; 8: 575–579.

    Article  CAS  PubMed  Google Scholar 

  32. Storto G et al. Estimation of coronary flow reserve by Tc-99 m sestamibi imaging in patients with coronary artery disease: comparison with the results of intracoronary Doppler technique. J Nucl Cardiol 2004; 11 (6): 682–688.

    Article  PubMed  Google Scholar 

  33. Roman MJ et al. Association of carotid atherosclerosis and left ventricular hypertrophy. J Am Coll Cardiol 1995; 25: 83–90.

    Article  CAS  PubMed  Google Scholar 

  34. Devereux RB et al. Relation of left ventricular midwall function to cardiovascular risk factors and arterial structure and function. Hypertension 1998; 31: 929–936.

    Article  CAS  PubMed  Google Scholar 

  35. Sasaki O, Hamada M, Hiwada K . Effects of coronary blood flow on left ventricular function in essential hypertensive patients. Hypertens Res 2000; 23: 239–245.

    Article  CAS  PubMed  Google Scholar 

  36. Schwartzkopff B et al. Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation 1993; 88: 993–1003.

    Article  CAS  PubMed  Google Scholar 

  37. Widlansky ME, Gokce N, Keaney Jr JF, Vita JA . The clinical implications of endothelial dysfunction. J Am Coll Cardiol 2003; 42: 1149–1160.

    Article  CAS  PubMed  Google Scholar 

  38. Gokce N et al. Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol 2003; 41: 1769–1775.

    Article  PubMed  Google Scholar 

  39. Ghiadoni L et al. Endothelial function and common carotid artery wall thickening in patients with essential hypertension. Hypertension 1998; 32: 25–32.

    Article  CAS  PubMed  Google Scholar 

  40. Muiesan ML et al. Flow-mediated dilatation of the brachial artery and left ventricular geometry in hypertensive patients. J Hypertens 2001; 19: 641–647.

    Article  CAS  PubMed  Google Scholar 

  41. Perticone F et al. Relationship between left ventricular mass and endothelium-dependent vasodilation in never-treated hypertensive patients. Circulation 1999; 99: 1991–1996.

    Article  CAS  PubMed  Google Scholar 

  42. Kozakova M et al. Coronary vasodilator capacity and epicardial vessel remodeling in physiological and hypertensive hypertrophy. Hypertension 2000; 36: 343–349.

    Article  CAS  PubMed  Google Scholar 

  43. Galderisi M et al. Coronary flow reserve in hypertensive patients with appropriate or inappropriate left ventricular mass. J Hypertens 2003; 21: 2183–2188.

    Article  CAS  PubMed  Google Scholar 

  44. Marcus ML et al. Alterations in the coronary circulation in hypertrophied ventricles. Circulation 1987; 75: I19–I25.

    CAS  PubMed  Google Scholar 

  45. Olsen MH et al. Association between vascular dysfunction and reduced myocardial flow reserve in patients with hypertension: a LIFE substudy. J Hum Hypertens 2004; 18 (6): 445–452.

    Article  CAS  PubMed  Google Scholar 

  46. Motz W et al. Evidence of endothelial dysfunction in coronary resistance vessels in patients with angina pectoris and normal coronary angiograms. Am J Cardiol 1991; 68: 996–1003.

    Article  CAS  PubMed  Google Scholar 

  47. Quyyumi AA et al. Contribution of nitric oxide to metabolic coronary vasodilation in the human heart. Circulation 1995; 92: 320–326.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the PhD Educational Grant, ‘Dottorato di Ricerca in Patologia e Clinica della Malattie cronico-degenerative del sistema cardiovascolare, reumatologiche e della nutrizione’—XVI ciclo, Dipartimento di Medicina Clinica e Sperimentale. Università ‘Federico II’, Napoli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Palmieri.

Additional information

Conflict of interest: None.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmieri, V., Storto, G., Arezzi, E. et al. Relations of left ventricular mass and systolic function to endothelial function and coronary flow reserve in healthy, new discovered hypertensive subjects. J Hum Hypertens 19, 941–950 (2005). https://doi.org/10.1038/sj.jhh.1001921

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001921

Keywords

This article is cited by

Search

Quick links