Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Review Article

Genetic variations related to hypertension: a review

Abstract

Hypertension is a complex multifactorial disorder with genetic, environmental and demographic factors contributing to its prevalence. The genetic element contribution to blood pressure variation ranges from 30 to 50%. Therefore, identifying hypertension susceptibility genes will help understanding the pathophysiology of the disease. In addition to the potential impact of genomic information in selecting antihypertensive drug therapy, it may also help in recognizing those at risk of developing the disease, which may lead to new preventive approaches. Several strategies and methods have been used to identify hypertension susceptibility genes. Currently, genetic analysis of such data produced complex results, which makes it difficult to draw final conclusion on the use of genomic data in management of hypertension. This review attempts to summarize present known genetic variations that may be implicated in the pathogenesis of hypertension and to discuss various research strategies used to identify them. It also highlights some of the opportunities and challenges, which may be encountered in interpreting the value of these genetic variations to improve management of hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lifton RP . Molecular genetics of human blood pressure variation. Science 1996; 272 (5262): 676–680.

    CAS  PubMed  Google Scholar 

  2. Izawa H et al. Prediction of genetic risk for hypertension. Hypertension 2003; 41 (5): 1035–1040.

    CAS  PubMed  Google Scholar 

  3. Williams SM et al. Combinations of variations in multiple genes are associated with hypertension. Hypertension 2000; 36 (1): 2–6.

    CAS  PubMed  Google Scholar 

  4. Timberlake DS, O'Conner DT, Parmer RJ . Molecular genetics of essential hypertension: recent results and emerging strategies. Opin Nephrol Hypertens 2001; 10: 71–79.

    CAS  Google Scholar 

  5. Tabor HK, Risch NJ, Myers RM . Opinion: Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 2002; 3 (5): 391–397.

    CAS  PubMed  Google Scholar 

  6. Krushkal J et al. Genome-wide linkage analyses of systolic blood pressure using highly discordant siblings. Circulation 1999; 99: 1407–1410.

    CAS  PubMed  Google Scholar 

  7. Sharma P et al. A genome-wide scan search for susceptibility loci to human hypertension. Hypertension 2000; 35: 1291–1296.

    CAS  PubMed  Google Scholar 

  8. Barkley RA et al. Family Blood Pressure Program. Positional identification of hypertension susceptibility genes on chromosome 2. Hypertension 2004; 43 (2): 477–482 (e-pub 2004 January 19).

    CAS  PubMed  Google Scholar 

  9. Xu X et al. An extreme-sib-pair genome scan for genes regulating blood pressure. Am J Hum Genet 1999; 64: 1694–1701.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Levy D et al. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham Heart Study. Hypertension 2000; 36 (4): 477–483.

    CAS  PubMed  Google Scholar 

  11. Hsueh WC et al. QTL influencing blood pressure maps to the region of PPH1 on chromosome 2q31–34 in Old Order Amish. Circulation 2000; 101 (24): 2810–2816.

    CAS  PubMed  Google Scholar 

  12. Caulfield M et al. Genome-wide mapping of human loci for essential hypertension. Lancet 2003; 361 (9375): 2118–2123.

    CAS  PubMed  Google Scholar 

  13. Rice T et al. Genome-wide linkage analysis of systolic and diastolic blood pressure: the Quebec Family Study. Circulation 2000; 102 (16): 1956–1963.

    CAS  PubMed  Google Scholar 

  14. Atwood LD et al. Genome-wide linkage analysis of blood pressure in Mexican Americans. Genet Epidemiol 2001; 20 (3): 373–382.

    CAS  PubMed  Google Scholar 

  15. Cooper RS et al. Genome scan among Nigerians linking blood pressure to chromosomes 2, 3, and 19. Hypertension 2002; 40 (5): 629–633.

    CAS  PubMed  Google Scholar 

  16. Ranade K et al. A genome scan for hypertension susceptibility loci in populations of Chinese and Japanese origins. Am J Hypertens 2003; 16 (2): 158–162.

    PubMed  Google Scholar 

  17. Province MA et al. National Heart, Lung and Blood Institute Family Blood Pressure Program. A meta-analysis of genome-wide linkage scans for hypertension: the National Heart, Lung and Blood Institute Family Blood Pressure Program. Am J Hypertens 2003; 16 (2): 144–147.

    PubMed  Google Scholar 

  18. Williams GH et al. Non-modulation as an intermediate phenotype in essential hypertension. Hypertension 1992; 20: 788–796.

    CAS  PubMed  Google Scholar 

  19. Hopkins PN et al. Blunted renal vascular response to angiotensin II is associated with a common variant of the angiotensinogen gene and obesity. J Hypertens 1996; 14: 199–207.

    CAS  PubMed  Google Scholar 

  20. Litchfield WR et al. Increased urinary free cortisol: a potential intermediate phenotype of essential hypertension. Hypertension 1998; 31: 569–574.

    CAS  PubMed  Google Scholar 

  21. Julier C et al. Genetic susceptibility for human familial essential hypertension in a region of homology with blood pressure linkage on rat chromosome 10. Hum Mol Genet 1997; 6 (12): 2077–2085.

    CAS  PubMed  Google Scholar 

  22. Baima J et al. Evidence for linkage between essential hypertension and a putative locus on human chromosome 17. Hypertension 1999; 34 (1): 4–7.

    CAS  PubMed  Google Scholar 

  23. Rutherford S, Johnson MP, Curtain RP, Griffiths LR . Chromosome 17 and the inducible nitric oxide synthase gene in human essential hypertension. Hum Genet 2001; 109 (4): 408–415.

    CAS  PubMed  Google Scholar 

  24. Knight J, Munroe PB, Pembroke JC, Caulfield MJ . Human chromosome 17 in essential hypertension. Ann Hum Genet 2003; 67 (Part 2): 193–206.

    CAS  PubMed  Google Scholar 

  25. Stoll M et al. New target regions for human hypertension via comparative genomics. Genome Res 2000; 10: 473–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lander ES, Schork NJ . Genetic dissection of complex traits. Science 1994; 265 (5181): 2037–2048.

    CAS  PubMed  Google Scholar 

  27. Takahashi N, Smithies O . Gene targeting approaches to analyzing hypertension. J Am Soc Nephrol 1999; 10: 1598–1605.

    CAS  PubMed  Google Scholar 

  28. Rapp JP, Wang SM, Dene H . A genetic polymorphism in the renin gene of Dah1 rats cosegregates with blood pressure. Science 1989; 243: 542–544.

    CAS  PubMed  Google Scholar 

  29. Hansson JH et al. Hypertension caused by a truncated epithelial sodium channel γ subunit: genetic heterogeneity of Liddlesyndrome. Nat genet 1995; 11: 76–82.

    CAS  PubMed  Google Scholar 

  30. Shimkets RA et al. Liddle's syndrome: heritable human hypertension caused by mutations in the β subunit of the epithelial sodium channel. Cell 1994; 79: 407–414.

    CAS  PubMed  Google Scholar 

  31. Mune T et al. Human hypertension caused bymutations in the kidney isozyme of 11 β-hydroxysteroid dehydrogenase. Nat Gent 1995; 10: 394–399.

    CAS  Google Scholar 

  32. Lifton RP et al. A chimeric 11 beta-hydroxylase/aldosterone synthase gene causes GRA and human hypertension. Nature 1992; 355 (6357): 262–265.

    CAS  PubMed  Google Scholar 

  33. Geller DS et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 2000; 289 (5476): 119–123.

    CAS  PubMed  Google Scholar 

  34. Yang CL, Angell J, Mitchell R, Ellison DH . WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest 2003; 111: 1039–1045.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilson FH et al. Human hypertension caused by mutations in WNK kinases. Science 2001; 293: 1107–1112.

    CAS  PubMed  Google Scholar 

  36. Guyton AC . Blood pressure control-special role of the kidneys and body fluids. Science 1991; 252: 1813.

    CAS  PubMed  Google Scholar 

  37. Weinberger ML, Miller JZ, Luft FC, Fineberg NS . Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension 1986; 8: 127.

    Google Scholar 

  38. Denton D . The effect of increased salt intake on blood pressure of chimpanzees. Nature Med 1995; 1: 1009.

    CAS  PubMed  Google Scholar 

  39. Grobbee DE . In: Swales JD (ed). Textbook of Hypertension. Blackwell Scientific: Oxford, 1994 pp 539.

    Google Scholar 

  40. Baker EH, Dong YB, Sagnella GA . Association of hypertension with T594M mutation in beta subunit of epithelial sodium channels in black people resident in London. Lancet 1998; 351: 1388–1392.

    CAS  PubMed  Google Scholar 

  41. Brand E et al. Structural analysis and evaluation of the aldosterone synthase gene CYP11B2. Hypertension 1998; 32: 198–204.

    CAS  PubMed  Google Scholar 

  42. Jeunemaitre X et al. Molecular basis of human hypertension: role of angiotensionogen. Cell 1992; 71: 169–180.

    CAS  PubMed  Google Scholar 

  43. Kunz R et al. Association between the angiotensinogen 235T-variant and essential hypertension in whites: a systemic review and methodological appraisal. Hypertension 1997; 30: 1331–1337.

    CAS  PubMed  Google Scholar 

  44. Staessen JA et al. M235T angiotensinogen gene polymorphism and cardiovascular renal risk. J Hypertens 1999; 17: 9–17.

    CAS  PubMed  Google Scholar 

  45. Wang WY et al. Exclusion of angiotensinogen gene in molecular basis of human hypertension: sibpair linkage and association analyses in Australian anglo-caucasians. Am J Med Genet 1999; 87 (1): 53–60.

    CAS  PubMed  Google Scholar 

  46. Caulfield M et al. Linkage of angiotensinogen gene to essential hypertension. NEJM 1994; 330 (23): 1629–1633.

    CAS  PubMed  Google Scholar 

  47. Frossard PM, Obineche EN, Elshahat YI, Lestringant GG . Deletion polymorphism in the angiotensin-converting enzyme gene is not associated with hypertension in a Gulf Arab population. Clin Genet 1997; 51 (3): 211–213.

    CAS  PubMed  Google Scholar 

  48. Dzida G et al. Polymorphisms of angiotensin-converting enzyme and angiotensin II receptor type 1 genes in essential hypertension in a Polish population. J Med Sci Monit 2001; 7 (6): 1236–1241.

    CAS  Google Scholar 

  49. Taittonen L et al. Angiotensin converting enzyme gene insertion/deletion polymorphism, angiotensinogen gene polymorphisms, family history of hypertension and childhood blood pressure. Am J Hypertens 1999; 12 (9 part 1): 858–866.

    CAS  PubMed  Google Scholar 

  50. Fornage M, Doris PA . Use of single nucleotide polymorphisms for gene discovery in hypertension. Curr Hypertens Rep 2000; 2 (1): 23–31.

    CAS  PubMed  Google Scholar 

  51. O'Donnell CJ et al. Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham heart study. Circulation 1998; 97: 1766–1772.

    CAS  PubMed  Google Scholar 

  52. Zhou L, Xue YM, Luo R, Gao F . Association of insertion/deletion polymorphism in angiotens-converting enzyme gene with hypertensive type 2 diabetes mellitus. Di Yi Jun Da Xue Bao 2002; 22 (9): 808–810.

    CAS  Google Scholar 

  53. Wang WY, Zee RY, Morris BJ . Association of angiotensin II type I receptor gene polymorphism with essential hypertension. Clin Genet 1997; 15 (1): 31–34.

    Google Scholar 

  54. Ono K et al. Lack of association between angiotensin II type 1 receptor gene polymorphism and hypertension in Japanese. Hypertens Res 2003; 26 (2): 131–134.

    CAS  PubMed  Google Scholar 

  55. Jiang Z, Zhao W, Yu F, Xu Gchin . Association of angiotensin II type 1 receptor gene polymorphism with essential hypertension. Med J (Engl) 2001; 114 (12): 1249–1251.

    CAS  Google Scholar 

  56. Stankovic A, Zivkovic M, Glisic S, Alavantic D . Angiotensin II type 1 receptor gene polymorphism and essential hypertension in Serbian population. Clin Chem Acta 2003; 327 (1–2): 181–185.

    CAS  Google Scholar 

  57. Dzida G et al. Polymorphisms of angiotensin-converting enzyme and angiotensin II receptor type 1 genes in essential hypertension in a Polish population. J Med Sci Monit 2001; 7 (6): 1236–1241.

    CAS  Google Scholar 

  58. Henderson SO, Bretsky P . Common variants in CYP11B2 and AGTR1 could account for excess hypertension in African Americans. Acad Emerg Med 2003; 10 (5): 560–561.

    Google Scholar 

  59. Castellano M et al. Angiotensin II type I receptor A/C 1166 polymorphism. Relationship with blood pressure and CVS structure. Hypertension 1996; 28: 1076–1080.

    CAS  PubMed  Google Scholar 

  60. Deng AY, Rapp JP . Evaluation of angiotensin II receptor AT1B gene as candidate gene for blood pressure. J Hypertens 1994; 12 (9): 1001–1006.

    CAS  PubMed  Google Scholar 

  61. Tamaki S, Iwai N, Tsujita Y, Kinoshita M . Genetic polymorphism of CYP11B2 and hypertension in Japanese. Hypertension 1999; 33 (1 part 2): 266–270.

    CAS  PubMed  Google Scholar 

  62. Davies E et al. Aldosterone excretion rate and blood pressure in essential hypertension are related to polymorphic differences in aldosterone synthase gene CYP11B2. Hypertension 1999; 33: 703–707.

    CAS  PubMed  Google Scholar 

  63. Tamaki S, Iwai N, Tsujita Y, Kinoshita M . Genetic polymorphism of CYP11B2 gene and hypertension in Japanese. Hypertension 1999; 33 (1 Part 2): 266–270.

    CAS  PubMed  Google Scholar 

  64. Tsujita Y et al. Lack of association between genetic polymorphism of CYP11B2 and hypertension in Japanese: the Suita Study. Hypertens Res 2001; 24 (2): 105–109.

    CAS  PubMed  Google Scholar 

  65. Zhu H et al. Contrasting associations between aldosterone synthase gene polymorphisms and essential hypertension in blacks and in whites. J Hypertens 2003; 21 (1): 87–95.

    CAS  PubMed  Google Scholar 

  66. Kumar NN et al. Haplotype analysis of aldosterone synthase gene (CYP11B2) polymorphisms shows association with essential hypertension. J Hypertens 2003; 21 (7): 1331–1337.

    CAS  PubMed  Google Scholar 

  67. Frossard PM, Malloy MJ, Lestringant GG, Kane JP . Halotypes of the human renin gene associated with essential hypertension and stroke. J Hum Hypertens 2001; 15 (1): 49–55.

    CAS  PubMed  Google Scholar 

  68. Knoll A et al. Human renin binding protein: complete genomic sequence and association of an intronic T/C polymorphism with the prorenin level in males. Hum Mol Genet 1997; 6 (9): 1527–1534.

    CAS  PubMed  Google Scholar 

  69. Yamamoto N et al. Identification of 33 polymorphisms in the adipocyte-derived leucine aminopeptidase gene (ALAP) and possible association with hypertension. Hum Mutat 2002; 19 (3): 251–257.

    CAS  PubMed  Google Scholar 

  70. Heximer SP et al. Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest 2003; 111: 445–452.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Siffert W . G-protein beta3 subunit 825T allele and hypertension. Curr Hypertens Rep 2003; 5 (1): 47–53.

    PubMed  Google Scholar 

  72. Siffert W et al. Association of human G-protein beta-3 subunit variant with hypertension. Nat Genet 1998; 18 (1): 45.

    CAS  PubMed  Google Scholar 

  73. Turner ST, Schwartz GL, Chapman AB, Boerwinkle E . C825T polymorphism of the G protein β3 subunit and antihypertensive response to a thiazide diuretic. Hypertension 2001; 37 (2): 739–743.

    CAS  PubMed  Google Scholar 

  74. Jia H et al. Association of the G(s)alpha gene with essential hypertension and response to beta-blockade. Hypertension 1999; 34: 8–14.

    CAS  PubMed  Google Scholar 

  75. Abe M et al. Association of GNAS1 gene variant with hypertension depending on smoking status. Hypertension 2002; 40 (3): 261–265.

    CAS  PubMed  Google Scholar 

  76. Busjahn A et al. Beta-2 adrenergic receptor variations, blood pressure and heart size in normal twins. Hypertension 2000; 35 (2): 555–560.

    CAS  PubMed  Google Scholar 

  77. Bray MS et al. Positional genomic analysis identifies the beta (2)-adrenergic receptor gene as a susceptibility locus for human hypertension. Circulation 2000; 101 (25): 2877–2882.

    CAS  PubMed  Google Scholar 

  78. Kato N et al. Association analysis of beta (2)-adrenergic receptor polymorphisms with hypertension in Japanese. Hypertension 2001; 37 (2): 286–292.

    CAS  PubMed  Google Scholar 

  79. Tomaszewski M et al. Essential hypertension and beta2-adrenergic receptor gene: linkage and association analysis. Hypertension 2002; 40 (3): 286–291.

    CAS  PubMed  Google Scholar 

  80. McNamara DM, MacGowan GA, London B . Clinical importance of beta-adrenoceptor polymorphisms in cardiovascular disease. Am J Pharmacogenom 2002; 2 (2): 73–78.

    CAS  Google Scholar 

  81. Bengtsson K et al. Polymorphism in the beta (1)-adrenergic receptor gene and hypertension. Circulation 2001; 104 (2): 187–190.

    CAS  PubMed  Google Scholar 

  82. Humma L, Terra SG . Pharmacogenetics and cardiovascular disease: impact on drug response and applications to disease management. Am J Health-Syst Pharm 2002; 59 (13): 1241–1252.

    CAS  PubMed  Google Scholar 

  83. Krushkal J et al. Linkage and association of adrenergic and dopamine receptor genes in the distal portion of the long arm of chromosome 5 with systolic blood pressure variation. Human Mol Genet 1998; 7: 1379–1383.

    CAS  Google Scholar 

  84. Matsubara M et al. Genotypes of the betaENaC gene have little influence on blood pressure level in the Japanese population. Am J Hypertens 2002; 15 (2 part 1): 189–192.

    CAS  PubMed  Google Scholar 

  85. Wong ZY et al. Genetic linkage of beta and gamma subunits of epithelial sodium channel to systolic blood pressure. Lancet 1999; 353: 1222–1225.

    CAS  PubMed  Google Scholar 

  86. Derebecka N et al. Polymorphism in intron 23 of the endothelial nitric oxide synthase gene (NOS3) is not associated with hypertension. Acta Biochem Pol 2002; 49 (1): 263–268.

    CAS  Google Scholar 

  87. Nakayama T et al. Association analysis of CA repeat polymorphism of the endothelial nitric oxide synthase gene with essential hypertension in Japanese. Clin Genet 1997; 51 (1): 26–30.

    CAS  PubMed  Google Scholar 

  88. Shoji M et al. Positive association of endothelial nitric oxide synthase gene polymorphism with hypertension in northern Japan. Life Sci 2000; 66 (26): 2557–2562.

    CAS  PubMed  Google Scholar 

  89. Kimura T et al. NOS3 genotype-dependent correlation between blood pressure and physical activity. Hypertension 2003; 41 (2): 355–360.

    CAS  PubMed  Google Scholar 

  90. Iwai N et al. Human prostacyclin synthase gene and hypertension: the Suita Study. Circulation 1999; 100 (22): 2231–2236.

    CAS  PubMed  Google Scholar 

  91. Nakayama T et al. Association study between a novel single nucleotide polymorphism of the promoter region of the prostacyclin synthase gene and essential hypertension. Hypertens Res 2002; 25 (1): 65–68.

    CAS  PubMed  Google Scholar 

  92. Nakajima T et al. Allelic variants in the interleukin-6-gene and essential hypertension in Japanese women. Genes Immun 1999; 1 (2): 115–119.

    CAS  PubMed  Google Scholar 

  93. Pola R et al. The -174 G/C polymorphism of the interleukin-6 gene promoter and essential hypertension in an elderly Italian population. J Hum Hypertens 2002; 16 (9): 637–640.

    CAS  PubMed  Google Scholar 

  94. Losito A, Kalidas K, Santoni S, Jeffery S . Association of interleukin-6 -174G/C promoter polymorphism with hypertension and left ventricular hypertrophy in dialysis patients. Kidney Int 2003; 64 (2): 616–622.

    CAS  PubMed  Google Scholar 

  95. Yamada Y et al. Association of a polymorphism of the transforming growth factor-beta 1 gene with blood pressure in Japanese individuals. J Hum Genet 2002; 47 (5): 243–248.

    CAS  PubMed  Google Scholar 

  96. Lijnen PJ, Petrov VV, Fagard RH . Association between transforming growth factor-beta and hypertension. Am J Hypertens 2003; 16 (7): 604–611.

    CAS  PubMed  Google Scholar 

  97. Tiret L et al. The Lys198Asn polymorphism in the endothelin-1 gene is associated with blood pressure in overweight people. Hypertension 1999; 33 (5): 1169–1174.

    CAS  PubMed  Google Scholar 

  98. Jin JJ et al. Association of endothelin-1 gene variant with hypertension. Hypertension 2003; 41 (1): 63–67.

    Google Scholar 

  99. Asai T et al. Endothelin-1 gene variant associates with blood pressure in obese Japanese subjects: the Ohasama Study. Hypertension 2001; 38 (6): 1321–1324.

    CAS  PubMed  Google Scholar 

  100. Harrap SB . Where are all the blood-pressure genes? Lancet 2003; 61 (9375): 2149–2151.

    Google Scholar 

  101. Cusi D et al. Polymorphisms of alpha-adducin and salt sensitivity in patients with essential hypertension. Lancet 1997; 349 (9062): 1353–1357.

    CAS  PubMed  Google Scholar 

  102. Stavroulakis GA et al. Predicting response to chronic antihypertensive treatment with fosinopril: the role of angiotensin converting enzyme polymorphism. Cardiovasc Drugs Ther 2000; 14: 427–432.

    CAS  PubMed  Google Scholar 

  103. Ohmichi N et al. Relationship between the response to the angiotensin converting enzyme inhibitor imidapril and the angiotensin converting enzyme genotype. Am J Hyptens 1997; 10: 951–955.

    CAS  Google Scholar 

  104. Harrap SB et al. Brief angiotensin enzyme inhibitor treatment in young spontaneously hypertensive rats reduce blood pressure long term. Hypertension 1990; 16: 603–614.

    CAS  PubMed  Google Scholar 

  105. Hwang DM et al. A genome-based resource for molecular cardiovascular medicine: toward a compendium cardiovascular genes. Circulation 1997; 96 (12): 4146–4203.

    CAS  PubMed  Google Scholar 

  106. Juengst ET . What next for human gene therapy? BMJ (editorial) 2003; 326: 1410–1411.

    Google Scholar 

  107. Cardon LR, Palmer LJ . Population stratification and spurious allelic association. Lancet 2003; 361: 598–604.

    PubMed  Google Scholar 

  108. Sharma AM, Jeunemaitre X . The future of genetic association studies in hypertension: improving the signal-to-noise ratio. J Hypertens 2000; 18 (7): 811–814.

    CAS  PubMed  Google Scholar 

  109. Staessen JA et al. Effects of three candidate genes on prevalence and incidence of hypertension in a Caucasian population. J Hypertens 2001; 19 (8): 1349–1358.

    CAS  PubMed  Google Scholar 

  110. Roses AD . Pharmacogenetics and the practice of medicine. Nature 2000; 405 (6788): 857–865.

    CAS  PubMed  Google Scholar 

  111. Iso H et al. Angiotensinogen T174M and M235 T variants, sodium intake and hypertension among non-drinking, lean Japanese men and women. J Hypertension 2000; 18 (9): 1197–1206.

    CAS  Google Scholar 

  112. Baudin B . Angiotensin II receptor polymorphis in hypertension pharmacogenomic considerations. Pharmacogenomics 2002; 3 (1): 65–73.

    CAS  PubMed  Google Scholar 

  113. Mulatero P et al. CYP11B2 gene polymorphisms in idiopathic hyperaldosteronism. Hypertension 2000; 35 (3): 694–698.

    CAS  PubMed  Google Scholar 

  114. Pojoga L et al. Genetic determination of plasma aldosterone levels in essential hypertension. Am J Hypertens 1998; 11 (7): 856–860.

    CAS  PubMed  Google Scholar 

  115. Hautanena A et al. Association between aldosterone synthase gene polymorphism and the adrenocortical function in males. J Intern Med 1998; 244 (1): 11–18.

    CAS  PubMed  Google Scholar 

  116. Yu H et al. Association of the tissue kallikrein gene promoter with ESRD and hypertension. Kidney Int 2002; 61 (3): 1030–1039.

    CAS  PubMed  Google Scholar 

  117. Baima J et al. Evidence for linkage between essential hypertension and a putative locus on human chromosome 17. Hypertension 1999; 34: 4–7.

    CAS  PubMed  Google Scholar 

  118. Iwai N et al. Association of sodium channel alpha subunit promoter variant with blood pressure. J Am Soc Nephrol 2002; 13 (1): 80–85.

    CAS  PubMed  Google Scholar 

  119. Iwai N et al. Association of sodium channel gamma-subunit promoter variant with blood pressure. Hypertension 2001; 38 (1): 86–89.

    CAS  PubMed  Google Scholar 

  120. Garay RP et al. A genetic approach to the geography of hypertension: examination of Na+-K+ cotransport in Ivory coast Africans. Clin Exp hypertens 1981; 3 (4): 861–870.

    CAS  PubMed  Google Scholar 

  121. Gollasch M et al. The BK channel beta1 subunit gene is associated with human baroreflex and blood pressure regulation. J Hypertens 2002; 20 (5): 927–933.

    CAS  PubMed  Google Scholar 

  122. Pola R et al. The −174G/C polymorphism of the interleukin-6 gene promoter and essential hypertension in an elderly Italian population. J Hum Hypertens 2002; 16 (9): 637–640.

    CAS  PubMed  Google Scholar 

  123. Mettimano M et al. CCR5 and CCR2 gene polymorphisms in hypertensive patients. Br J Biomed Sci 2003; 6091: 19–21.

    Google Scholar 

  124. Kato N et al. Genetic analysis of the atrial natriuretic peptide gene in essential hypertension. Clin Sci (Lond) 2000; 98 (3): 251–258.

    CAS  Google Scholar 

  125. Pratt JH, Ambrosius WT, Wanger MA, Maharry K . Molecular variations in the calcium-sensing receptor in relation to sodium balance and presence of hypertension in blacks and whites. Am J hypertens 2000; 13 (6 part 1): 654–658.

    CAS  PubMed  Google Scholar 

  126. Wu DA et al. Quantitative trait locus mapping of human blood pressure to a genetic region at or near the lipoprotein lipase gene locus on chromosome 8p22. J Clin Invest 1996; 97 (9): 2111–2118.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Frossard PM, Lestringant GG, Malloy MJ, Kane JP . Human renin gene BgII dimorphism associated with hypertension in two independent populations. Clin Genet 1999; 56 (6): 428–433.

    CAS  PubMed  Google Scholar 

  128. Kang BY et al. Apolipoprotein (a) gene polymorphism in the Korean population: is there any relevance to essential hypertension? Med Princ Pract 2002; 11 (2): 69–74.

    PubMed  Google Scholar 

  129. Harrap SB et al. The SA gene: predisposition to hypertension and renal function in man. Clin Sci (London) 1995; 88 (6): 665–670.

    CAS  Google Scholar 

  130. Peters J . Molecular basis of hypertension: the role of angiotensin. Baillieres Clin Endocrinol Metab 1995; 9 (3): 657.

    CAS  PubMed  Google Scholar 

  131. Busjahn A et al. Serum- and glucocorticoid- regulated kinase (SGK1) gene and blood pressure. Hypertension 2002; 40 (3): 256–260.

    CAS  PubMed  Google Scholar 

  132. Sugimoto K et al. Alpha-adducin Gly460Trp polymorphism is associated with low renin hypertension in younger subjects in the Ohasama study. J Hypertens 2002; 20 (9): 1779.

    CAS  PubMed  Google Scholar 

  133. Hong J, Li G, Li C . Relationship between calpain-10 gene polymorphism, hypertension and plasma glucose. Zhonghu Nei Ke Za Zhi 2002; 41 (6): 370–373.

    CAS  Google Scholar 

  134. Mulatero P et al. Blood pressure in patients with primary aldosteronism is influenced by bradykinin B2 receptor and alpha-adducin gene polymorphisms. J Clin Endocrinol Metab 2002; 87 (7): 3337–3343.

    CAS  PubMed  Google Scholar 

  135. Rosmond R, Chagnon M, Bouchard C, Bjorntorp P . Polymorphism in exon 4 of the human 3 beta-hydoxysteroid dehydrogenase type 1 gene (HSD3B1) and blood pressure. Biochem Biophys res Commun 2002; 293 (1): 629–632.

    CAS  PubMed  Google Scholar 

  136. Shintani M et al. Leptin gene polymorphism is associated with hypertension independent of obesity. J Clin Endocrinol Metab 2002; 87 (6): 2909–2912.

    CAS  PubMed  Google Scholar 

  137. Mizutan K et al. Kynureninase is a novel candidate gene for hypertension in spontaneously hypertensive rats. Hypertens Res 2002; 25 (1): 135–140.

    Google Scholar 

  138. Solban N et al. Chromosomal mapping of HcaRG, a novel hypertension-related, calcium-regulated gene. Folia Biol (Praha) 2002; 48 (1): 9–14.

    CAS  Google Scholar 

  139. Hsueh WC et al. QTL influencing blood pressure maps to the region of PPH1 on chromosome 2q31-34 in Old Order Amish. Circulation 2000; 101 (24): 2810–2816.

    CAS  PubMed  Google Scholar 

  140. Shoji M, Tsutaya S, Kasai T, Yasujima M . Implication of single nucleotide polymorphisms in association study: mitochondrial variations as another genetic markers for hypertension. Rinsho Byori 2002; 50 (5): 497–501.

    CAS  PubMed  Google Scholar 

  141. Brand E, Bankir L, Plouin P, Soubrier F . Glucagon receptor gene mutation (Gly40Ser) in human essential hypertension. Hypertension 1999; 34: 15–17.

    CAS  PubMed  Google Scholar 

  142. Lin R, Wang W, Morris B . Association and linkage analyses of glucocorticoid receptor gene markers in essential hypertension. Hypertension 1999; 34: 1186–1192.

    CAS  PubMed  Google Scholar 

  143. Tan MS et al. Association of resistin gene 3′-untranslated region +62G to A polymorphism with type 2 diabetes and hypertension in a Chinese population. J Clin Endocrinol Metab 2003; 88 (3): 1258–1263.

    CAS  PubMed  Google Scholar 

  144. Hirata RD et al. A method to detect the G894T polymorphism of the NOS3 gene. Clinical validation in familial hypercholesrolemia. Clin Chem Lab Med 2002; 40 (5): 436–440.

    CAS  PubMed  Google Scholar 

  145. Julier C et al. Genetic susceptibility for human familial essential hypertension in a region of homology with blood pressure linkage on rat chromosome 10. Hum Mol Genet 1997; 6 (12): 2077–2085.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M O M Tanira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanira, M., Al Balushi, K. Genetic variations related to hypertension: a review. J Hum Hypertens 19, 7–19 (2005). https://doi.org/10.1038/sj.jhh.1001780

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001780

Keywords

This article is cited by

Search

Quick links