Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oxidative stress in white coat hypertension; role of paraoxonase

Abstract

Oxidative stress in sustained hypertension was shown with several biochemical parameters. Oxidized low-density lipoprotein (oxLDL) plays an important role during the atherosclerosis process and paraoxonase (PON1) can significantly inhibit lipid peroxidation. Serum PON1 activity, oxLDL and malondialdehyde (MDA) concentrations and their relationship with serum lipid parameters and systolic and diastolic blood pressures (SBP and DBP) were determined in subjects with white coat hypertension (WCH), sustained hypertension (HT) and normotension (NT). The study group consisted of a total of 86 subjects, 30 with WCH (14 male, 16 female subjects), 30 with HT (13 male, 17 female subjects) and 26 with NT (12 male, 14 female subjects). Both white coat hypertensive and hypertensive subjects had significantly higher levels of MDA than normotensives (P<0.026 and P<0.001, respectively). The oxLDL level of the HT group was significantly higher than the NT group (P<0.023). The WCH group had an oxLDL level similar to both hypertensive and normotensive groups. HT and WCH groups had significantly lower PON1 levels than the normotensive group (P<0.001). oxLDL correlated with MDA positively (P=0.008), and PON1 negatively (P=0.008). A negative correlation between MDA and PON1 (P=0.014) was detected. MDA correlated positively with both SBP and DBP (P=0.001), while PON1 correlated with both of them negatively (P=0.01 and P=0.008, respectively). OxLDL correlated with diastolic blood pressure positively (P=0.008). Our data demonstrate that oxidative stress increase in WCH is associated with a decrease in PON1 activity. The reduction in PON1 activity may be one of the factors leading to an increase in oxidative status in WCH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sagar S et al. Oxygen free radicals in essential hypertension. Mol Cell Biochem 1992; 111 (1–2): 103–108.

    CAS  PubMed  Google Scholar 

  2. Koska J et al. Malondialdehyde, lipofuscin and activity of antioxidant enzymes during physical exercise in patients with essential hypertension. J Hypertens 1999; 17 (4): 529–535.

    Article  CAS  PubMed  Google Scholar 

  3. Steinberg D . Oxidative modification of LDL and atherogenesis. Circulation 1997; 95 (4): 1062–1071.

    Article  CAS  PubMed  Google Scholar 

  4. Witztum JL . The oxidation hypothesis of atherosclerosis. Lancet 1994; 344 (17): 793–795.

    Article  CAS  PubMed  Google Scholar 

  5. Li D, Mehta JL . 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors protect against oxidized low-density lipoprotein induced endothelial dysfunction. Endothelium 2003; 10 (1): 17–21.

    Article  PubMed  Google Scholar 

  6. Mackness Ml et al. Paraoxonase: biochemistry, genetics and relationship to p1asma lipoproteins. Curr Opin Lipidol 1996; 7 (2): 69–76.

    Article  Google Scholar 

  7. Aviram M et al. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. J Clin Invest 1998; 101 (8): 1581–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rozenberg O et al. Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress: studies in PON1-knockout mice. Free Radic Biol Med 2003; 34 (6): 774–784.

    Article  CAS  PubMed  Google Scholar 

  9. Sözmen B, Delen Y, Girgin FK, Sözmen EY . Catalase and paraoxonase in hypertensive type 2 diabetes mellitus: correlation with glycemic control. Clin Biochem 1999; 32 (6): 423–427.

    Article  PubMed  Google Scholar 

  10. Laplaud PM, Dantoine T, Chapman MJ . Paraoxonase as a risk marker for cardiovascular disease: facts and hypothesis. Clin Chem Lab Med 1998; 36 (7): 431–441.

    Article  CAS  PubMed  Google Scholar 

  11. Mackness B et al. Paraoxonase status in coronary heart disease. Arterioscler Thromb Vasc Biol 2001; 21: 1451–1457.

    Article  CAS  PubMed  Google Scholar 

  12. Cardillo C, De Felice F, Campia U, Folli G . Psychophysiological reactivity and cardiac end-organ changes in white coat hypertension. Hypertension 1993; 21 (6 Part 1): 836–844.

    Article  CAS  PubMed  Google Scholar 

  13. Bjorklund K et al. Different metobolic predictors of white-coat and sustained hypertension over a 20-year follow up period: a population-based study of elderly men. Circulation 2002; 106 (1): 63–68.

    Article  PubMed  Google Scholar 

  14. Julius S et al. ‘White coat’ versus ‘sustained’ borderline hypertension in Tecumseh, Michigan. Hypertension 1990; 16 (6): 617–623.

    Article  CAS  PubMed  Google Scholar 

  15. Cardillo C, De Felice F, Campia U, Folli G . Psychophysiological reactivity and cardiac end-organ changes in white coat hypertension. Hypertension 1993; 21 (6 Part 1): 836–844.

    Article  CAS  PubMed  Google Scholar 

  16. No authors listed. Recommendations for routine blood pressure measurement by indirect cuff sphygmomanometry. American Society of Hypertension. Am J Hypertens 1992; 5 (4): 207–209.

  17. Ramsay LE et al, for the British Hypertension Society. BHS Guidelines for the management of hypertension: report of third working party of the British Hypertension Society. J Hum Hypertens 1999; 13: 569–592.

    Article  CAS  PubMed  Google Scholar 

  18. Alderman M et al. 1999 World Health Organization—International Society of Hypertension Guidelines for the Management of Hypertension. Guidelines Subcommittee. J Hypertens 1999; 17 (2): 151–185.

    Google Scholar 

  19. O'Brien E et al. Blood pressure measuring devices: recommendations of the European Society of Hypertension. BMJ 2001; 322 (7285): 531–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O'Brien E et al. Use and interpretation of ambulatory blood pressure monitoring: recommendations of the British Hypertension Society. BMJ 2000; 320 (7242): 1128–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buege JA, Aust SD . Microsomal lipid peroxidation. Methods Enzymol 1978; 52: 302–310.

    Article  CAS  PubMed  Google Scholar 

  22. Hasselwander O et al. Paraoxonase polymorphisms are not associated with cardiovascular risk in renal transplant recipients. Kidney Int 1999; 56 (1): 289–298.

    Article  CAS  PubMed  Google Scholar 

  23. Saha N et al. Influence of serum paraoxonase polymorphism on serum lipids and apolipoproteins. Clin Genet 1991; 40 (4): 277–282.

    Article  CAS  PubMed  Google Scholar 

  24. Newaz MA, Nawal NN . Effect of gamma-tocotrienol on blood pressure, lipid peroxidation and total antioxidant status in spontaneously hypertensive rats (SHR). Clin Exp Hypertens 1999; 21 (8): 1297–1313.

    Article  CAS  PubMed  Google Scholar 

  25. Uddin M et al. Elevation of oxidative stress in the aorta of genetically hypertensive mice. Mech Ageing Dev 2003; 124 (7): 811–817.

    Article  CAS  PubMed  Google Scholar 

  26. Kumar CA, Das UN . Lipid peroxides, anti-oxidants and nitric oxide in patients with pre-eclampsia and essential hypertension. Med Sci Monit 2000; 6 (5): 901–907.

    CAS  PubMed  Google Scholar 

  27. Suzuki H et al. Xanthine oxidase activity associated with arterial blood pressure in spontaneously hypertensive rats. Proc Natl Acad Sci USA 1998; 95 (8): 4754–4759.

    Article  CAS  PubMed  Google Scholar 

  28. Beswick RA, Dorrance AM, Leite R, Webb RC . NADH/NADPH oxidase and enhanced superoxide production in the mineralocorticoid hypertensive rat. Hypertension 2001; 38 (5): 1107–1111.

    Article  CAS  PubMed  Google Scholar 

  29. Djordjevic VB et al. Changes of lipid peroxides and antioxidative factors levels in blood of patients treated with ACE inhibitors. Clin Nephrol 1997; 47 (4): 243–247.

    CAS  PubMed  Google Scholar 

  30. Torrecillas G et al. The role of hydrogen peroxide in the contractile response to angiotensin II. Mol Pharmacol 2001; 59 (1): 104–112.

    Article  CAS  PubMed  Google Scholar 

  31. Redon J et al. Antioxidant activities and oxidative stress byproduct in human hypertension. Hypertension 2003; 41 (5): 1096–1101.

    Article  CAS  PubMed  Google Scholar 

  32. Pierdomenico SD et al. Low density lipoprotein oxidation and vitamins E and C in sustained and white coat hypertension. Hypertension 1998; 31: 621–636.

    Article  CAS  PubMed  Google Scholar 

  33. Gomez CR et al. Noninvasive study of endothelial function in white coat hypertension. Hypertension 2002; 40 (3): 304–309.

    Article  Google Scholar 

  34. Karter Y et al. Endothelial dysfunction in sustained and white coat hypertension. Am J Hypertens 2003; 16 (10): 892.

    Article  PubMed  Google Scholar 

  35. Antonicelli R et al. Relationship between lipoprotein(a) levels, oxidative stress, and blood pressure levels in patients with essential hypertension. Clin Exp Med 2001; 1 (3): 145–150.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Uzun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uzun, H., Karter, Y., Aydin, S. et al. Oxidative stress in white coat hypertension; role of paraoxonase. J Hum Hypertens 18, 523–528 (2004). https://doi.org/10.1038/sj.jhh.1001697

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001697

Keywords

This article is cited by

Search

Quick links