Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nitrendipine and amlodipine mimic the acute effects of enalapril on renal haemodynamics and reduce glomerular hyperfiltration in patients with chronic kidney disease

Abstract

Antihypertensive drugs may have an important effect on glomerular haemodynamics. In chronic nephropathy patients, we compared the effect on glomerular haemodynamics of two second-generation dihydropyridinic agents, nitrendipine and amlodipine, with a first generation dihydropyridinic agent and an ACE-inhibitor, enalapril. In all, 32 patients (pts), divided into four groups, received the different drugs: ENA (enalapril, eight pts), NIF (nifedipine, eight pts), NIT (nitrendipine, eight pts) AML (amlodipine, eight pts). The study assessed the effect on glomerular haemodynamics of a single administration of the test drug in baseline conditions and in glomerular hyperfiltration experimentally induced by amino-acid infusion. The glomerular filtration rate (GFR, measured by inulin clearance), effective renal plasma flow (ERPF, measured by p-aminohippurate clearance), renal vascular resistances (RVR) and filtration fraction (FF) were assessed. Administration of AML and NIT test dose reduced FF, as did ENA, but not NIF, in both baseline (AML: P=0.005; NIT: P=0.02; ENA: P=0.007) and glomerular hyperfiltration conditions (AML: P=0.0003; NIT: P=0.03; ENA: P=0.00006). In baseline conditions, only ENA resulted in a significant drop in the GFR (P=0.008), while NIF, NIT and AML induced a significant increase (P=0.003, 0.03, 0.0001, respectively). However, in hyperfiltration conditions, NIT (0.08) and AML (0.00003) caused a decrease in the GFR, as did ENA (0.0003) but not NIF. In all the experimental conditions, a RVR reduction and an ERPF increase were observed. Single dose of NIT and AML were effective in attenuating the effect of amino-acid infusion on glomerular filtration, similar to ENA; this effect of NIT and AML on the glomerular filtration rate is not observed under basal conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Raij L, Chiou XC, Owens R, Wrigley B . Therapeutic implications of hypertension induced glomerular injury. Am J Med 1985; 79: 37–41.

    Article  CAS  Google Scholar 

  2. Anderson S, Meyer TW, Rennke HG, Brenner BM . Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Invest 1985; 76: 612–619.

    Article  CAS  Google Scholar 

  3. Meyer TW, Anderson S, Rennke HG, Brenner BM . Reversing glomerular hypertension stabilizes established glomerular injury. Kidney Int 1987; 31: 751–759.

    Article  Google Scholar 

  4. Anderson S . Antihypertensive therapy and the progression of renal disease. J Hypertens 1989; 7 (Suppl): S39–S42.

    Article  CAS  Google Scholar 

  5. Bedogna V et al. Effects of ACE inhibition in normo-tensive patients with chronic glomerular disease and normal renal function. Kidney Int 1990; 38: 101–107.

    Article  CAS  Google Scholar 

  6. Bauer JH, Reams GP, Lal SM . Renal protective effect of strict blood pressure control with enalapril therapy. Arch Intern Med 1987; 147: 1397–1400.

    Article  CAS  Google Scholar 

  7. Simons JL et al. Modulation of glomerular hypertension defines susceptibility to progressive glomerular injury. Kidney Int 1994; 46: 396–404.

    Article  CAS  Google Scholar 

  8. Vos PF, Boer P, Braam B, Koomans HA . Efficacy of intrarenal ACE-inhibition estimated from the renal response to angiotensin I and II in humans. Kidney Int 1995; 47: 274–281.

    Article  CAS  Google Scholar 

  9. Juncos LI et al. Abnormal renal vasodilation to an amino acid infusion in congestive heart failure: normalization by enalapril. Am J Kidney Dis 1999; 33: 43–51.

    Article  CAS  Google Scholar 

  10. Fridman K, Wysocki M, Friberg P, Andersson OK . Candesartan cilexetil and renal hemodynamics in hypertensive patients. Am J Hypertens 2000; 13: 1045–1048.

    Article  CAS  Google Scholar 

  11. Buter H, Navis G, de Zeeuw D, de Jong PE . Renal hemodynamic effects of candesartan in normal and impaired renal function in humans. Kidney Int 1997; 63 (Suppl): S185–S187.

    CAS  Google Scholar 

  12. Heller J, Horacek V . The effect of two different calcium antagonists on the glomerular haemodynamics in the dog. Pflugers Arch 1990; 415: 751–755.

    Article  CAS  Google Scholar 

  13. Hayashi K et al. Disparate effects of calcium antagonists on renal microcirculation. Hypertens Res 1996; 19: 31–36.

    Article  CAS  Google Scholar 

  14. Ruggenenti P, Perna A, Benini R, Remuzzi G . Effects of dihydropyridine calcium channel blockers, angiotensin-converting enzyme inhibition, and blood pressure control on chronic, nondiabetic nephropathies. Gruppo Italiano di Studi epidemiologici in Nefrologia (GISEN). J Am Soc Nephrol 1998; 9: 2096–2101.

    CAS  PubMed  Google Scholar 

  15. Kvam FI, Ofstad J, Iversen BM . Effects of antihypertensive drugs on autoregulation of RBF and glomerular capillary pressure in SHR. Am J Physiol 1998; 275 (4 Part 2): F576–F584.

    CAS  PubMed  Google Scholar 

  16. Scaglione R et al. Antihypertensive efficacy and effects of nitrendipine on cardiac and renal hemodynamics in mild to moderate hypertensive patients: randomized controlled trial versus hydrochlorothiazide. Cardiovasc Drugs Ther 1992; 6: 141–146.

    Article  CAS  Google Scholar 

  17. Kloke HJ et al. Effects of nitrendipine and cilazapril on renal hemodynamics and albuminuria in hypertensive patients with chronic renal failure. J Cardiovasc Pharmacol 1990; 16: 924–930.

    Article  CAS  Google Scholar 

  18. Grossman E et al. Systemic and regional hemodynamic and humoral effects of nitrendipine in essential hypertension. Circulation 1988; 78: 1394–1400.

    Article  CAS  Google Scholar 

  19. Schmitz A . Acute renal effects of oral felodipine in normal man. Eur J Clin Pharmacol 1987; 32: 17–22.

    Article  CAS  Google Scholar 

  20. Holdaas H et al. Renal effects of losartan and amlodipine in hypertensive patients with non-diabetic nephropathy. Nephrol Dial Transplant 1998; 13: 3096–3102.

    Article  CAS  Google Scholar 

  21. August P, Lenz T, Laragh JH . Comparative renal hemodynamic effects of lisinopril, verapamil, and amlodipine in patients with chronic renal failure. Am J Hypertens 1993; 6: 148S–154S.

    Article  CAS  Google Scholar 

  22. Licata G et al. Effects of amlodipine on renal haemodynamics in mild to moderate hypertensive patients. A randomized controlled study versus placebo. Eur J Clin Pharmacol 1993; 45: 307–311.

    Article  CAS  Google Scholar 

  23. Loutzenhiser RD, Epstein M, Fischetti F, Horton C . Effects of amlodipine on renal hemodynamics. Am J Cardiol 1989; 64: 122I–128I.

    Article  CAS  Google Scholar 

  24. Reams GP, Lau A, Hamory A, Bauer JH . Amlodipine therapy corrects renal abnormalities encountered in the hypertensive state. Am J Kidney Dis 1987; 10: 446–451.

    Article  CAS  Google Scholar 

  25. Viberti G et al. Effect of protein-restricted diets on renal response to a meat meal in humans. Am J Physiol (Renal, Fluid Electrol Physiol) 1987; 22: F388–F393.

    Google Scholar 

  26. Bergstrom J, Ahlberg M, Alvestrand A . Influence of protein intake on renal hemodynamics and plasma hormone concentrations in normal subjects. Acta Med Scand 1985; 217: 189–196.

    Article  CAS  Google Scholar 

  27. Jones MG, Lee K, Swaminathan R . The effect of dietary protein on glomerular filtration rate in normal subjects. Clin Nephrol 1987; 27: 71–75.

    CAS  PubMed  Google Scholar 

  28. Paller MS, Hostetter TH . Dietary protein increases plasma renin and reduces pressor reactivity to angiotensin II. Am J Physiol (Renal, Fluid Electrol Physiol) 1986; 20: F34–F39.

    Article  Google Scholar 

  29. Liedtke RR, Duarte CG . Laboratory protocols and methods for the measurement of glomerular filtration rate and renal plasma flow. In: Duarte CG (ed). Renal Function Tests: Clinical Laboratory Procedures and Diagnosis. Little Brown Company: Boston, 1980, pp 49–63.

    Google Scholar 

  30. Walser M, Davidson DG, Orloff J . The renal clearance of alkali-stable inulin. J Clin Invest 1955; 34: 1520–1523.

    Article  CAS  Google Scholar 

  31. Raemsch KD, Sommer J . Pharmacokinetics and metabolism of nifedipine. Hypertension 1983; 5 (Suppl II): II-18–II-24.

    CAS  Google Scholar 

  32. Dylewicz P et al. Bioavailability and elimination of nitrendipine in liver disease. Eur J Clin Pharmacol 1987; 32: 563–568.

    Article  CAS  Google Scholar 

  33. Reid JL, Meredith PA, Donnelly R, Elliott HL . Pharmacokinetics of calcium antagonists. J Cardiovasc Pharmacol 1988; 12 (Suppl 7): S22–S26.

    Article  CAS  Google Scholar 

  34. Carmines PK, Perry MD, Hazelrig JB, Navar LG . Effects of preglomerular and postglomerular vascular resistance alterations on filtration fraction. Kidney Int 1987; 20 (Suppl): S229–S232.

    CAS  Google Scholar 

  35. Hall JE et al. Control of glomerular filtration rate by circulating angiotensin II. Am J Physiol 1981; 241: R190–R197.

    CAS  PubMed  Google Scholar 

  36. Pelayo JC, Quan AH, Shanley PF . Angiotensin II con-trol of the renal microcirculation in rats with reduced renal mass. Am J Physiol 1990; 258: F414–F422.

    CAS  PubMed  Google Scholar 

  37. Steinhausen M et al. Angiotensin II control of the renal microcirculation: effect of blockade by saralasin. Kidney Int 1986; 30: 56–61.

    Article  CAS  Google Scholar 

  38. Navar LG, Rosivall L, Carmines PK, Oparil S . Effects of locally formed angiotensin II on renal hemodynamics. Fed Proc 1986; 45: 1448–1453.

    CAS  PubMed  Google Scholar 

  39. Epstein M, Hayashi K, Loutzenhiser R . Nifedipine prevents pressure-induced afferent arteriolar vasoconstriction in isolated perfused hydronephrotic kidneys from hypertensive rats. Kidney Int 1989; 35: 427.

    Google Scholar 

  40. Loutzenhiser RD, Epstein M . Renal hemodynamic effects of calcium antagonists. J Cardiovasc Pharmacol 1988; 12 (Suppl 6): S48–S52.

    Article  CAS  Google Scholar 

  41. Fleming JT, Parekh N, Steinhausen M . Calcium antagonists preferentially dilate preglomerular vessels of hydronephrotic kidney. Am J Physiol 1987; 253: F1157–F1163.

    CAS  PubMed  Google Scholar 

  42. Ozawa Y et al. Renal afferent and efferent arteriolar dilation by nilvadipine: studies in the isolated perfused hydronephrotic kidney. J Cardiovasc Pharmacol 1999; 33: 243–247.

    Article  CAS  Google Scholar 

  43. ter Wee PM, Donker AJ . Pharmacologic manipulation of glomerular function. Kidney Int 1994; 45: 417–424.

    Article  CAS  Google Scholar 

  44. Dworkin LD, Ichikawa I, Brenner BM . Hormonal modulation of glomerular function. Am J Physiol 1983; 244: F95–F104.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partly supported by Grants (40%: 92.02039, 60%: 97.66633) from the Ministry of University and Scientific and Technological Research, Rome, Italy. Part of this work was presented at the European Dialysis Transplant Association meeting, Geneva, Switzerland, 21–24 September, 1997. We thank Ms MVC Pragnell, BA, for her help in revising the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L F Morrone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrone, L., Ramunni, A., Fassianos, E. et al. Nitrendipine and amlodipine mimic the acute effects of enalapril on renal haemodynamics and reduce glomerular hyperfiltration in patients with chronic kidney disease. J Hum Hypertens 17, 487–493 (2003). https://doi.org/10.1038/sj.jhh.1001579

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001579

Keywords

This article is cited by

Search

Quick links