Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Blood pressure determinants of left ventricular wall thickness and mass index in hypertension: comparing office, ambulatory and exercise blood pressures

Abstract

Left ventricular (LV) mass relates positively and continuously to cardiac mortality and thus its regression is a rational therapeutic aim. Whilst the office blood pressure (BP) relates poorly to LV mass, it was unclear whether the 24-h ambulatory BP or the exercise systolic BP (ExSBP) was the stronger correlate of LV structural indices. We studied 49 hypertensive patients with a mean age of 45 (s.d. 12) years with a mean body mass index of 27.1(3.9) kg/m2. The mean (s.d.) of office BP, ambulatory BP and ExSBP measured at the end of the first three stages of Bruce protocol treadmill exercise I, II and III were 161(20)/99(10), 140(13)/89(10), 190(30), 198(30) and 201(33) mm Hg respectively. The LV indices measured echocardiographically were LV septal thickness (IVSd) (1.1(0.2) cm), LV posterior wall thickness (LVPWd) (1.0(0.1) cm) and LV mass indexed to body surface area (LVMI) (123(30) g/m2). Age and gender (male) had the highest correlations with the LV indices. Of the BP measures, the stage II ExSBP’s correlation with the LV indices was consistently higher than all other ExSBP, office systolic BP and 24-h systolic ambulatory BP. In a stepwise multiple regression analysis on IVSd, after adjusting for age and gender, the stage II ExSBP was independently associated with IVSd (β= 0.018 (s.e. 0.008), P = 0.024). When only BP measures were considered as explanatory variables only stage II ExSBP was a significant predictor (P = 0.0001) of IVSd as was the case with LVPWd (P = 0.006) and LVMI (P = 0.0008). Submaximal exercise BP measured at a workload comparable to physical activity encountered in daily life correlated more closely with the left ventricular wall thickness and mass. The exercise BP should perhaps be normalised in hypertension management to optimise regression of LV hypertrophy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schillaci G et alContinuous relation between left ventricular mass and cardiovascular risk in essential hypertension Hypertension 2000 35 580–586

    Article  CAS  PubMed  Google Scholar 

  2. MacMahon S et alBlood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias Lancet 1990 335 765–774

    Article  CAS  PubMed  Google Scholar 

  3. Verdecchia P et alPrognostic significance of serial changes in left ventricular mass in essential hypertension Circulation 1998 97 48–54

    Article  CAS  PubMed  Google Scholar 

  4. Devereux RB et alLeft ventricular hypertrophy inpatients with hypertension: importance of blood pressure response to regularly recurring stress Circulation 1983 68 470–476

    Article  CAS  PubMed  Google Scholar 

  5. Schillaci G et alIncomplete normalization of left ventricular mass in well-controlled hypertension Am J Hypertens 1998 11 3A

    Article  Google Scholar 

  6. Pierdomenico SD, Bucci A, Cuccurullo F, Mezzetti A White coat responder hypertension Am J Hypertens 1998 11 49A

    Google Scholar 

  7. Staessen JA, O’Brien ET Development of diagnostic thresholds for automated measurement of blood pressures in adults Blood Press Monit 1999 4 127–136

    CAS  PubMed  Google Scholar 

  8. Verdecchia P Prognostic value of ambulatory blood pressure: current evidence and clinical implications Hypertension 2000 35 844–851

    Article  CAS  PubMed  Google Scholar 

  9. Lim PO, MacFadyen RJ, Clarkson PB, MacDonald TM Impaired exercise tolerance in hypertensivepatients Ann Intern Med 1996 124 41–55

    Article  CAS  PubMed  Google Scholar 

  10. Cardillo C et alRelation of stress testing and ambulatory blood pressure to hypertensive cardiac damage Am J Hypertens 1996 9 162–170

    Article  CAS  PubMed  Google Scholar 

  11. Ramsay L et alGuidelines for management of hypertension: report of the third working party of the British Hypertension Society J Hum Hypertens 1999 13 569–592

    Article  CAS  PubMed  Google Scholar 

  12. Sahn DJ, DeMaria A, Kisslo J, Weyman A Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements Circulation 1978 58 1072–1083

    Article  CAS  PubMed  Google Scholar 

  13. Devereux RB et alEchocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings Am J Cardiol 1986 57 450–458

    Article  CAS  PubMed  Google Scholar 

  14. Hammond IW et alThe prevalence and correlates of echocardiographic left ventricular hypertrophy among employedpatients with uncomplicated hypertension J Am Coll Cardiol 1986 7 639–650

    Article  CAS  PubMed  Google Scholar 

  15. Mancia G et alAmbulatory blood pressure is superior to clinic blood pressure in predicting treatment-induced regression of left ventricular hypertrophy. SAMPLE Study Group. Study on Ambulatory Monitoring of Blood Pressure and Lisinopril Evaluation Circulation 1997 95 1464–1470

    Article  CAS  PubMed  Google Scholar 

  16. Cuspidi C et alBlood pressure control in a hypertension hospital clinic J Hypertens 1999 17 835–841

    Article  CAS  PubMed  Google Scholar 

  17. Staessen JA et alPredicting cardiovascular risk using conventional vs ambulatory blood pressure in olderpatients with systolic hypertension. Systolic Hypertension in Europe Trial Investigators JAMA 1999 282 539–546

    Article  CAS  PubMed  Google Scholar 

  18. Levy D et alEchocardiographically detected left ventricular hypertrophy: prevalence and risk factors. The Framingham Heart Study Ann Intern Med 1988 108 7–13

    Article  CAS  PubMed  Google Scholar 

  19. Daniels SD, Meyer RA, Loggie JM Determinants of cardiac involvement in children and adolescents with essential hypertension Circulation 1990 82 1243–1248

    Article  CAS  PubMed  Google Scholar 

  20. Opie LH Mechanism of Cardiac Contraction and relaxation. In: Braunwald E (ed) Heart Disease: a textbook of cardiovascular medicine WB Saunders: Philadelphia 1997 360–393

    Google Scholar 

  21. Devereux RB, Pickering TG Relationship between ambulatory or exercise blood pressure and left ventricular structure: prognostic implications J Hypertens 1990 8 (Suppl 6) S125–S134

    Google Scholar 

  22. Papademetriou V et alExercise blood pressure response and left ventricular hypertrophy Am J Hypertens 1989 2 114–116

    Article  CAS  PubMed  Google Scholar 

  23. Clement DL, De Buyzere M, Duprez D Prognostic value of ambulatory blood pressure monitoring J Hypertens 1994 12 857–864

    CAS  PubMed  Google Scholar 

  24. Gosse P Campello G, Aouizerate E, Dallocchio M. Left-ventricular hypertrophy in hypertension – correlation with exercise and ambulatory blood-pressure J Hypertens 1986 4 645

    Article  Google Scholar 

  25. Grossman E et alLeft ventricular mass in hypertension: correlation with casual, exercise and ambulatory blood pressure J Hum Hypertens 1994 8 741–746

    CAS  PubMed  Google Scholar 

  26. Lund-Johansen P Twenty-year follow-up of hemodynamics in essential hypertension during rest and exercise Hypertension 1991 18 III54–III61

    Article  CAS  PubMed  Google Scholar 

  27. Mundal R et alClustering of coronary risk factors with increasing blood pressure at rest and during exercise J Hypertens 1998 16 19–22

    Article  CAS  PubMed  Google Scholar 

  28. Messerli FH, Schmieder RE, Weir MR Salt A perpetrator of hypertensive target organ disease? Arch Intern Med 1997 157 2449–2452

    CAS  PubMed  Google Scholar 

  29. Schlaich MP et alRelation between the renin-angiotensin-aldosterone system and left ventricular structure and function in young normotensive and mildly hypertensive subjects Am Heart J 1999 138 810–817

    Article  CAS  PubMed  Google Scholar 

  30. Draaijer P et alVascular distensibility and compliance in salt-sensitive and salt-resistant borderline hypertension J Hypertens 1993 11 1199–1207

    CAS  PubMed  Google Scholar 

  31. Lim PO, Donnan PT, MacDonald TM Aldosterone to renin ratio as a determinant of exercise blood pressure response in hypertensivepatients. 18th International meeting of the International Society of Hypertension, 2000, Chicago

  32. Rossi GP et alRemodeling of the left ventricle in primary aldosteronism due to Conn’s adenoma Circulation 1997 95 1471–1478

    Article  CAS  PubMed  Google Scholar 

  33. Ostman-Smith I Cardiac sympathetic nerves as the final common pathway in the induction of adaptive cardiac hypertrophy Clin Sci 1981 61 265–272

    Article  CAS  Google Scholar 

  34. Sun Y, Weber KT Angiotensin II and aldosterone receptor binding in rat heart and kidney: response to chronic angiotensin II or aldosterone administration J Lab Clin Med 1993 122 404–411

    CAS  PubMed  Google Scholar 

  35. Kop WJ, Gottdiener JS, Patterson SM, Krantz DS Relationship between left ventricular mass and hemodynamic responses to physical and mental stress J Psychosom Res 2000 48 79–88

    Article  CAS  PubMed  Google Scholar 

  36. Andersson OK et alSurvival in treated hypertension: follow up study after two decades BMJ 1998 317 167–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lim PO, Shiels P, MacDonald TM The Dundee Step Test: a novel exercise test suitable for the outpatient management of hypertension J Hypertens 1998 16 1701

    CAS  PubMed  Google Scholar 

  38. Filipovsky J, Ducimeticre P, Safar ME Prognostic significance of exercise blood pressure and heart rate in middle-aged men Hypertension 1992 20 333–339

    Article  CAS  PubMed  Google Scholar 

  39. Mundal R et alExercise blood pressure predicts cardiovascular mortality in middle-aged men Hypertension 1994 24 56–62

    Article  CAS  PubMed  Google Scholar 

  40. Mundal R et alExercise blood pressure predicts mortality from myocardial infarction Hypertension 1996 27 324–329

    Article  CAS  PubMed  Google Scholar 

  41. Lim PO, Donnan PT, MacDonald TM Does the Dundee Step Test predict outcome in treated hypertension? A sub-study protocol for the ASCOT trial J Hum Hypertens 2000 14 75–78

    Article  CAS  PubMed  Google Scholar 

  42. Lim PO, Donnan PT, MacDonald TM How well do Office and Exercise Blood Pressures Predict Sustained Hypertension? A Dundee Step Test Study J Hum Hypertens 2000 14 429–433

    Article  CAS  PubMed  Google Scholar 

  43. Lim PO, Rana BS, Struthers AD, MacDonald TM Exercise systolic blood pressure is an independent predictor of corrected maximum QT interval in hypertension [Abstract] Am J Hypertens 2000 13 213A

    Google Scholar 

  44. Giaconi S et alLeft ventricular mass in borderline hypertension, assessed by echocardiography. Relationships with resting and stress blood pressure J Nucl Med Allied Sci 1989 33 26–31

    CAS  PubMed  Google Scholar 

  45. Nathwani D, Reeves RA, Marquez-Julio A, Leenen FH Left ventricular hypertrophy in mild hypertension: correlation with exercise blood pressure Am Heart J 1985 109 386–387

    Article  CAS  PubMed  Google Scholar 

  46. Knutsen KM et alCorrelations between left ventricular mass and systolic blood pressure at rest and during maximal exercise in moderately hypertensive men J Hum Hypertens 1991 5 149–154

    CAS  PubMed  Google Scholar 

  47. Tanaka H, Bassett DR, Jr, Turner MJ. Exaggerated blood pressure response to maximal exercise in endurance-trained individuals Am J Hypertens 1996 9 1099–1103

    Article  CAS  PubMed  Google Scholar 

  48. Ren JF, Hakki AH, Kotler MN, Iskandrian AS Exercise systolic blood pressure: a powerful determinant of increased left ventricular mass inpatients with hypertension J Am Coll Cardiol 1985 5 1224–1231

    Article  CAS  PubMed  Google Scholar 

  49. Smith DH et alImpact of left ventricular hypertrophy on blood pressure responses to exercise Am J Cardiol 1992 69 225–228

    Article  CAS  PubMed  Google Scholar 

  50. Schmieder RE et alRelation of hemodynamic reaction during stress to left ventricular hypertrophy in essential hypertension Am J Hypertens 1990 3 281–287

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Catherine MacLeod for helping with the treadmill exercise tests and did all the echocardiographic examinations. Professor Allan D Struthers for his helpful critique of the paper. (Funding: Anonymous Trust of Dundee, Scotland.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PO Lim.

Additional information

This paper has been published in an abstract form following an oral presentation in the 18th Scientific Meeting of the International Society of Hypertension, J Hypertens 2000; 18 (Suppl 4): S9[4C.04].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, P., Donnan, P. & MacDonald, T. Blood pressure determinants of left ventricular wall thickness and mass index in hypertension: comparing office, ambulatory and exercise blood pressures. J Hum Hypertens 15, 627–633 (2001). https://doi.org/10.1038/sj.jhh.1001229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001229

Keywords

This article is cited by

Search

Quick links