Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mesenteric fat thickness as an independent determinant of fatty liver

Abstract

Objective:

Mesenteric fat is drained by the portal circulation and has been suggested to be a key component in obesity-related health risk, notably the metabolic syndrome. There are increasing epidemiological and experimental data showing that fatty liver is another component of this multifaceted syndrome. Given their intimate anatomical and physiological relationships, we hypothesized that mesenteric fat thickness may be independently associated with the risk of fatty liver. To test this hypothesis, we examined the predictive role of various fat deposits including mesenteric fat thickness, and various metabolic variables on the risk of fatty liver.

Subjects and methods:

A total of 291 Chinese subjects (134 men and 157 women with a mean BMI of 23.7 kg/m2, range: 16.5–33.4 kg/m2) underwent ultrasound examination for measurement of mesenteric, subcutaneous and preperitoneal fat thickness, and for diagnosis of fatty liver. Body mass index, waist circumference, and waist–hip ratio were recorded. Blood pressure was measured. Fasting plasma glucose, insulin resistance, high-density lipoprotein cholesterol (HDL-C), triglycerides, low-density lipoprotein cholesterol (LDL-C), liver enzymes were determined by common methods.

Results:

The subjects with fatty liver had greater abdominal fat thickness and higher anthropometric indexes than those without fatty liver. The subjects with fatty liver also showed higher blood pressure, worse lipid and glycaemic profile compared with those without fatty liver. Using multiple logistic regression analysis, mesenteric fat thickness was a risk factor of fatty liver, independent of body mass index, age, sex, insulin resistance, fasting plasma glucose, lipid and blood pressure. The odds ratio was 1.5 (95% confidence interval: 1.27–1.77) for every 1 mm increase in the mesenteric fat thickness. Measurement of preperitoneal and subcutaneous fat deposits did not show significant associations with fatty liver.

Conclusion:

Mesenteric fat thickness measured on ultrasound is an independent determinant of fatty liver.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Nakao K, Nakata K, Ohtsubo N, Maeda M, Moriuchi T, Ichikawa T et al. Association between nonalcoholic fatty liver, markers of obesity, and serum leptin level in young adults. Am J Gastroenterol 2002; 97: 1796–1801.

    Article  CAS  Google Scholar 

  2. Kaplan LM . Leptin, obesity, and liver disease. Gastroenterology 1998; 115: 997–1001.

    Article  CAS  Google Scholar 

  3. Gross JB . Metabolic diseases of the liver. In: Shearman DJC, Finlayson N, Camilleri M (eds). Diseases of the Gastrointestinal Tract and Liver 3rd edn Churchill Livingstone: New York, 1997. pp. 975–978.

    Google Scholar 

  4. Kral JG, Schaffner F, Pierson RN, Wang J . Body fat topography as an independent predictor of fatty liver. Metabolism 1993; 42: 548–551.

    Article  CAS  Google Scholar 

  5. Knobler H, Schattner A, Zhornicki T, Malnick SD, Keter D, Sokolovskaya N et al. Fatty liver, an additional and treatable feature of insulin resistance syndrome. Q J Med 1999; 92: 73–79.

    Article  CAS  Google Scholar 

  6. Luyckx FH, Lefebvre PJ, Scheen AJ . Nonalcoholic steatohepatitis: association with obesity and insulin resistance, and influence of weight loss. Diabetes Metab 2000; 26: 98–106.

    CAS  PubMed  Google Scholar 

  7. Sabir N, Sermez Y, Kazil S, Zencir M . Correlation of abdominal fat accumulation and liver steatosis: importance of ultrasonographic and anthropometric measurements. Eur J Ultrasound 2001; 14: 121–128.

    Article  CAS  Google Scholar 

  8. Rebuffe-Scrive M, Anderson B, Olbe L, Bjorntorp P . Metabolism of adipose tissue in intraabdominal depots of nonobese men and women. Metabolism 1989; 38: 453–458.

    Article  CAS  Google Scholar 

  9. Liu KH, Chan YL, Chan WB, Kong WL, Kong MO, Chan JCN . Sonographic measurement of mesenteric fat thickness is a good correlate with cardiovascular risk factors: comparison with subcutaneous and preperitoneal fat thickness, magnetic resonance imaging and anthropometric indexes. Int J Obes Relat Metab Disord 2003; 27: 1267–1273.

    Article  CAS  Google Scholar 

  10. Derchi LE, Solbiati L, Rizzatto G, Pra LD . Normal anatomy and pathologic changes of the small bowel mesentery: US appearances. Radiology 1987; 164: 649–652.

    Article  CAS  Google Scholar 

  11. Scatarige JC, Scott WE, Donovan PJ, Siegelman SS, Sanders RC . Fatty infiltration of the liver. Ultrasonographic and computed tomographic correlation. J Ultrasound Med 1984; 3: 9–14.

    Article  CAS  Google Scholar 

  12. Dowse GK, Zimmet PZ, Garceboo H, George K, Alberti MM, Tuomilehto J et al. Abdominal obesity and physical inactivity as risk factors for NIDDM and impaired glucose tolerance in Indians, Greole, and Chinese Mauritians. Diabetes Care 1991; 14: 271–282.

    Article  CAS  Google Scholar 

  13. Scheen AJ, Luyckx FH . Obesity and liver disease. Best Pract Res Clin Endocrinol Metab 2002; 16: 703–716.

    Article  CAS  Google Scholar 

  14. Fried SK, Kral JG . Sex differences in regional distribution of fat cell size and lipoprotein lipase activity in morbidly obese patients. Int J Obes 1987; 11: 129–140.

    CAS  PubMed  Google Scholar 

  15. Hsieh SD, Yoshinago H, Muto T, Sakurai Y, Kosaka K . Health risks among Japanese men with moderate body mass index. Int J Obes Relat Metab Disord 2000; 24: 358–362.

    Article  CAS  Google Scholar 

  16. Dobbelsteyn CJ, Joffres MR, MacLean DR, Flowerdew G . A comparative evaluation of waist circumference, waist-to-hip ratio and body mass index as indicators of cardiovascular risk factors. The Canadian Heart Health Surveys. Int J Obes 2001; 25: 652–661.

    Article  CAS  Google Scholar 

  17. Vague J, Vague P, Meignen JM, Jubelin J, Tramoni M . Android and gynoid obesities, past and present. In: Vague J, Bjorntorp P, Guy-Grand B, Rebuffe-Scrive M, Vague P (eds) Metabolic Complications of Human Obesities. Excerpta Medica/Elsevier Science, Amesterdam, 1985. pp. 3–11.

    Google Scholar 

  18. Ramirez ME . Measurement of subcutaneous adipose tissue using ultrasound images. Am J Phys Anthropol 1992; 89: 347–357.

    Article  CAS  Google Scholar 

  19. Orphanidou C, McCargar L, Birmingham CL, Mathieson J, Goldner E . Accuracy of subcutaneous fat measurement: comparison of skinfold calipers, ultrasound, and computed tomography. J Am Diet Assoc 1994; 94: 855–858.

    Article  CAS  Google Scholar 

  20. Fanelli MT, Kuczmarski RJ, Hirsch M . Estimation of body fat from ultrasound measures of subcutaneous fat and circumferences in obese women. Int J Obes 1988; 12: 125–132.

    CAS  PubMed  Google Scholar 

  21. Tadokoro N, Murano S, Nishide T, Suzuki R, Wantanabe S, Murayama H, Morisaki N, Saito Y . Preperitoneal fat thickness determined by ultrasonography is correlated with coronary stenosis and lipid disorders in non-obese male subjects. Int J Obes Relat Metab Disord 2000; 24: 502–507.

    Article  CAS  Google Scholar 

  22. Suzuki R, Wantanabe S, Hirai Y, Akiyama K, Nishide T, Matsushima Y et al. Abdominal wall fat index, estimated by ultrasonography, for assessment of the ratio of visceral fat to subcutaneous fat in the abdomen. Am J Med 1993; 95: 309–314.

    Article  CAS  Google Scholar 

  23. Armellini F, Zamboni M, Rigo L, Todesco T, Bergamo-Andreis IA, Procacci C et al. The contribution of sonography to the measurement of intra-abdominal fat. J Clin Ultrasound 1990; 18: 563–567.

    Article  CAS  Google Scholar 

  24. Thorne A, Lonnqvist F, Apelman J, Hellers G, Arner P . A pilot study of long-term effects of a novel obesity treatment: omenectomy in connection with adjustable gastric banding. Int J Obes Relat Metab 2002; 26: 193–199.

    Article  CAS  Google Scholar 

  25. Stranges S, Dorn JM, Muti P, Freudenheim JL, Farinaro E, Russell M et al. Body fat distribution, relative weight, and liver enzyme levels: a population-based study. Hepatology 2004; 39: 754–763.

    Article  Google Scholar 

  26. Festi D, Colecchia A, Sacco T, Bondi M, Roda E, Marchesini G . Hepatic steatosis in obese patients: clinical aspects and prognostic significance. Obes Rev 2004; 5: 27–42.

    Article  CAS  Google Scholar 

  27. Sakugawa H, Nakayoshi T, Kobashigawa K, Nakasone H, Kawakami Y, Yamashiro T et al. Metabolic syndrome is directly associated with gamma glutamyl transpeptidase elevation in Japanese women. World J Gastroenterol 2004; 10: 1052–1055.

    Article  CAS  Google Scholar 

  28. Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, McCullough AJ et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 1999; 107: 450–455.

    Article  CAS  Google Scholar 

  29. Hsiao TJ, Chen JC, Wang JD . Insulin resistance and ferritin as major determinants of nonalcoholic fatty liver disease in apparently healthy obese patients. Int J Obes 2004; 167–172.

    Article  Google Scholar 

  30. Bjorntorp P . Portal adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis 1990; 10: 493–496.

    Article  CAS  Google Scholar 

  31. Bjorntorp P . Metabolic implications of body fat distribution. Diabetes Care 1991; 14: 1132–1143.

    Article  CAS  Google Scholar 

  32. Fong DG, Nehra V, Lindor KD, Buchman AL . Metabolic and nutritional considerations in nonalcoholic fatty liver. Hepatology 2000; 32: 3–10.

    Article  CAS  Google Scholar 

  33. Kaplan LM . Leptin, obesity and liver disease. Gastroenterology 1998; 115: 997–1001.

    Article  CAS  Google Scholar 

  34. Ahima RS, Jeffery SF . Adipose tissue as an endocrine organ. Trends Endocrinol Metab 2000; 11: 327–332.

    Article  CAS  Google Scholar 

  35. Anderson PJ, Lee ZSK, Chan JCN, Lee KC, Chan YL, Metreweli C . Visceral fat and cardiovascular risk factors in Chinese NIDDM patients. Diabetes Care 1997; 20: 1854–1858.

    Article  CAS  Google Scholar 

  36. Rattarasarn C, Leelawattana R, Soonthornpun S, Setasuban W, Thamprasit A, Lim A et al. Regional abdominal fat distribution in lean and obese Thai type 2 diabetic women: relationships with insulin sensitivity and cardiovascular risk factors. Metabolism 2003; 52: 1444–1447.

    Article  CAS  Google Scholar 

  37. Chan DC, Watts GF, Barrett PH . Comparison of intraperitoneal and posterior subcutaneous abdominal adipose tissue compartments as predictors of VLDL apolipoprotein B-100 kinetics in overweight / obese men. Diabetes Obes Metab 2003; 5: 202–206.

    Article  CAS  Google Scholar 

  38. Kelley DE, Thaete FL, Troost F, Huwe T, Goodpaster BH . Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab 2000; 278: E941–E948.

    Article  CAS  Google Scholar 

  39. Smith SR, Lovejoy JC, Greenway F, Ryan D, deJonge L, Bretonne J et al. Contribution of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism 2001; 50: 425–435.

    Article  CAS  Google Scholar 

  40. Reaven G, Abbasi F, McLaughlin T . Obesity, insulin resistance, and cardiovascular disease. Recent Prog Horm Res 2004; 59: 207–223.

    Article  CAS  Google Scholar 

  41. Friis-Liby I, Aldenborg F, Jerlstad P, Rundstrom K, Bjornsson E . High prevalence of metabolic complications in patients with non-alcoholic fatty liver disease. Scand J Gastroenterol 2004; 39: 864–869.

    Article  CAS  Google Scholar 

  42. Pi-sunyer FX . Pathophysiology and long-term management of the metabolic syndrome. Obes Res 2004; 12 (Suppl 3): 174S–180S.

    Article  CAS  Google Scholar 

  43. Yu AS, Keeffe EB . Nonalcoholic fatty liver disease. Rev Gastroenterol Disorders 2002; 2: 11–18.

    Google Scholar 

  44. Sargin M, Uygur-Bayramicli O, Sargin H, Orbay E, Yayla A . Association of nonalcoholic fatty liver disease with insulin resistance: is OGTT indicated in nonalcoholic fatty liver disease. J Clin Gastroenterol 2003; 37: 399–402.

    Article  CAS  Google Scholar 

  45. Kojima S, Wantanabe N, Numata M, Ogawa T, Matsuzaki S . Increase in the prevalence of fatty liver in Japan over the past 12 years: analysis of clinical background. J Gastroenterol 2003; 38: 954–961.

    Article  Google Scholar 

  46. Saveryumuttu SH, Joseph AEA, Maxwell JD . Ultrasound scanning in the detection of hepatic fibrosis and steatosis. BMJ 1986; 292: 13–15.

    Article  Google Scholar 

  47. Hultcrantz R, Gabrielsson N . Patients with persistent elevation of aminotransferases: Investigation with ultrasonography, radionuclide imaging and liver biopsy. J Intern Med 1993; 233: 7–12.

    Article  CAS  Google Scholar 

  48. Joseph AEA, Saveryumuttu SH, AI-Sam S Cook MG, Maxwell JD . Comparison of liver histology with ultrasonography in assessing diffuse parenchymal liver disease. Clin Radiol 1991; 43: 26–31.

    Article  CAS  Google Scholar 

  49. Cavouras D, Kandarakis I, Theotokas I, Kanellopoulos E, Triantis D, Behrakis I et al. Computer image analysis of ultrasound images for discriminating and grading liver parenchyma disease employing a hierarchical decision tree scheme and the multilayer perception neural network classifier. Stud Health Technol Inform 1997; 43: 522–526.

    PubMed  Google Scholar 

  50. Mendler MH, Bouillet P, Le Sidaner A, Lavoine E, Labrousse F, Sautereau D et al. Dual-energy CT in the diagnosis and quantification of fatty liver: limited clinical value in comparison to ultrasound scan and single-energy CT, with special reference to iron overload. J Hepatol 1998; 28: 785–794.

    Article  CAS  Google Scholar 

  51. Layer G, Zuna I, Lorenz A, Zerban H, Haberkorn U, Bannasch P et al. Computerized ultrasound B-scan texture analysis of experimental diffuse parenchymal liver disease: Correlation with histopathology and tissue composition. J Clin Ultrasound 1999; 19: 193–201.

    Article  Google Scholar 

  52. Assy N, Kaita K, Mymin D, Levy C, Rosser B, Minuk G . Fatty infiltration of liver in hyperlipidemic patients. Digestive Diseases Sci 2000; 45: 1929–1934.

    Article  CAS  Google Scholar 

  53. Leung NWY . Patterns of viral hepatitis in Hong Kong. Br J Hospital Med 1997; 58: 166–169.

    CAS  Google Scholar 

  54. Hwang SJ, Luo JC, Chu CW, Lai CR, Lu CL, Tsay SH et al. Hepatic steatosis in chronic hepatitis C virus infection: prevalence and clinical correlation. J Gastroenterol Hepatol 2001; 16: 190–195.

    Article  CAS  Google Scholar 

  55. Pi-Sunyer FX . Pathophysiology and long -term management of the metabolic syndrome. Obes Res 2004; 12: 174S–180S.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K H Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, K., Chan, Y., Chan, J. et al. Mesenteric fat thickness as an independent determinant of fatty liver. Int J Obes 30, 787–793 (2006). https://doi.org/10.1038/sj.ijo.0803201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803201

Keywords

This article is cited by

Search

Quick links