Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Molecular links between aging and adipose tissue

Abstract

White adipose tissue now emerges as a pivotal organ controlling lifespan. Calorie restriction, which so far extends lifespan in all organisms, primarily affects energy stores in adipose tissue. Genetic manipulations aiming at modifying fat mass also impact on the duration of life in several model organisms. We recently proposed that silent information regulator 2 (SIR2) ortholog, sirtuin 1 (SIRT1), the mammalian ortholog of the life-extending yeast gene SIR2, is involved in the molecular mechanisms linking lifespan to adipose tissue. SIRT1 represses peroxisome proliferator-activated receptors gamma transactivation and inhibits lipid accumulation in adipocytes. The effect of adipose tissue reduction on lifespan could be due to the production of adipokines acting on target tissues such as the brain, or due to the indirect prevention of age-related metabolic disorders like type 2 diabetes or atherosclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Tuljapurkar S, Li N, Boe C . A universal pattern of mortality decline in the G7 countries. Nature 2000; 405: 789–792.

    Article  CAS  Google Scholar 

  2. Hekimi S, Burgess J, Bussiere F, Meng Y, Benard C . Genetics of lifespan in C. elegans: molecular diversity, physiological complexity, mechanistic simplicity. Trends Genet 2001; 17: 712–718.

    Article  CAS  Google Scholar 

  3. Hekimi S, Guarente L . Genetics and the specificity of the aging process. Science 2003; 299: 1351–1354.

    Article  CAS  Google Scholar 

  4. Kenyon C . A conserved regulatory system for aging. Cell 2001; 105: 165–168.

    Article  CAS  Google Scholar 

  5. Weindruch R, Walford RL . The retardation of aging and diseases by dietary restriction. Thomas, CC: Springfield, IL; 1998.

    Google Scholar 

  6. Koubova J, Guarente L . How does calorie restriction work? Genes Dev 2003; 17: 313–321.

    Article  CAS  Google Scholar 

  7. Lin SJ, Defossez PA, Guarente L . Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000; 289: 2126–2128.

    Article  CAS  Google Scholar 

  8. Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L . Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 2002; 418: 344–348.

    Article  CAS  Google Scholar 

  9. Kaeberlein M, McVey M, Guarente L . The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999; 13: 2570–2580.

    Article  CAS  Google Scholar 

  10. Tissenbaum HA, Guarente L . Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001; 410: 227–230.

    Article  CAS  Google Scholar 

  11. Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R . The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA 2000; 97: 5807–5811.

    Article  CAS  Google Scholar 

  12. Imai S, Armstrong CM, Kaeberlein M, Guarente L . Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403: 795–800.

    Article  CAS  Google Scholar 

  13. Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, Avalos JL, Escalente-Semerena JC, Grubmeyer C, Wolberger C, Boeke JD . A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA 2000; 97: 6658–6663.

    Article  CAS  Google Scholar 

  14. Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T . Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 2002; 21: 2383–2396.

    Article  CAS  Google Scholar 

  15. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA . hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001; 107: 149–159.

    Article  CAS  Google Scholar 

  16. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W . Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001; 107: 137–148.

    Article  CAS  Google Scholar 

  17. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, De Cabo R, Sinclair DA . Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004; 305: 390–392.

    Article  CAS  Google Scholar 

  18. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME . Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303: 2011–2015.

    Article  CAS  Google Scholar 

  19. Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney MW, Guarente L . Mammalian SIRT1 represses forkhead transcription factors. Cell 2004; 116: 551–563.

    Article  CAS  Google Scholar 

  20. Blüher M, Kahn BB, Kahn CR . Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 2003; 299: 572–574.

    Article  Google Scholar 

  21. Barzilai N, Gupta G . Interaction between aging and syndrome X: new insights on the pathophysiology of fat distribution. Ann NY Acad Sci 1999; 892: 58–72.

    Article  CAS  Google Scholar 

  22. Holliday R . Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? BioEssays 1989; 10: 125–127.

    Article  CAS  Google Scholar 

  23. Gabriely I, Ma XH, Yang XM, Atzmon G, Rajala MW, Berg AH, Scherer P, Rossetti L, Barzilai N . Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process? Diabetes 2002; 51: 2951–2958.

    Article  CAS  Google Scholar 

  24. Bodkin NL, Ortmeyer HK, Hansen BC . Long-term dietary restriction in older-aged rhesus monkeys: effects on insulin resistance. J Gerontol A Biol Sci Med Sci 1995; 50: B142–B147.

    Article  CAS  Google Scholar 

  25. Barzilai N, Gupta G . Revisiting the role of fat mass in the life extension induced by caloric restriction. J Gerontol A Biol Sci Med Sci 1999; 54: B89–B96 (discussion B97–98).

    Article  CAS  Google Scholar 

  26. Elahi D, Muller DC . Carbohydrate metabolism in the elderly. Eur J Clin Nutr 2000; 54 (Suppl 3): S112–S120.

    Article  CAS  Google Scholar 

  27. Mora S, Pessin JE . An adipocentric view of signaling and intracellular trafficking. Diabetes Metab Res Rev 2002; 18: 345–356.

    Article  CAS  Google Scholar 

  28. Barzilai N, Gabriely I . The role of fat depletion in the biological benefits of caloric restriction. J Nutr 2001; 131: 903S–906S.

    Article  CAS  Google Scholar 

  29. Fernandez-Galaz C, Fernandez-Agullo T, Perez C, Peralta S, Arribas C, Andres A, Carrascosa JM, Ros M . Long-term food restriction prevents ageing-associated central leptin resistance in Wistar rats. Diabetologia 2002; 45: 997–1003.

    Article  CAS  Google Scholar 

  30. Wang Z-W, Pan W-T, Lee Y, Kakuma T, Zhou Y-T, Unger RH . The role of leptin in the lipid abnormalities of aging. Faseb J 2001; 15: 108–114.

    Article  CAS  Google Scholar 

  31. Toth MJ, Tchernof A . Lipid metabolism in the elderly. Eur J Clin Nutr 2000; 54 (Suppl 3): S121–S125.

    Article  CAS  Google Scholar 

  32. DeFronzo RA . Glucose intolerance and aging. Diabetes Care 1981; 4: 493–501.

    Article  CAS  Google Scholar 

  33. Elahi D, Muller D, Egan JM, Andres R, Veldhuis J, Meneilly GS . Glucose tolerance, glucose utilisation and insulin secretion in ageing. Novartis Found Symp 2002; 242: 222–242.

    CAS  PubMed  Google Scholar 

  34. Reaven GM, Chen N, Hollenbeck C, Chen YD . Effect of age on glucose tolerance and glucose uptake in healthy individuals. J Am Geriatr Soc 1989; 37: 735–740.

    Article  CAS  Google Scholar 

  35. Narimiya M, Azhar S, Dolkas CB, Mondon CE, Sims C, Wright DW, Reaven GM . Insulin resistance in older rats. Am J Physiol 1984; 246: E397–E404.

    CAS  PubMed  Google Scholar 

  36. Kumar MV, Moore RL, Scarpace PJ . Beta3-adrenergic regulation of leptin, food intake, and adiposity is impaired with age. Pflugers Arch 1999; 438: 681–688.

    CAS  PubMed  Google Scholar 

  37. Nyberg G, Mellgren G, Smith U . Human adipose tissue in culture. VI. Effect of age on cell size and lipolysis. Acta Paediatr Scand 1976; 65: 313–318.

    Article  CAS  Google Scholar 

  38. Miller EA, Allen DO . Hormone-stimulated lipolysis in isolated fat cells from ‘young’ and ‘old’ rats. J Lipid Res 1973; 14: 331–336.

    CAS  PubMed  Google Scholar 

  39. Blaak EE . Adrenergically stimulated fat utilization and ageing. Ann Med 2000; 32: 380–382.

    Article  CAS  Google Scholar 

  40. Gupta G, Cases JA, She L, Ma XH, Yang XM, Hu M, Wu J, Rossetti L, Barzilai N . Ability of insulin to modulate hepatic glucose production in aging rats is impaired by fat accumulation. Am J Physiol 2000; 278: E985–E991.

    CAS  Google Scholar 

  41. Bravo E, Rivabene R, Bruscalupi G, Calcabrini A, Arancia G, Cantafora A . Age-related changes in lipid secretion of perfused livers from male Wistar rats donors. J Biochem (Tokyo) 1996; 119: 240–245.

    Article  CAS  Google Scholar 

  42. Imbeault P, Prins JB, Stolic M, Russell AW, O’Moore-Sullivan T, Despres JP, Bouchard C, Tremblay A . Aging per se does not influence glucose homeostasis. Diabetes Care 2003; 26: 480–484.

    Article  Google Scholar 

  43. Kohrt WM, Holloszy JO . Loss of skeletal muscle mass with aging: effect on glucose tolerance. J Gerontol A Biol Sci Med Sci 1995; 50 (Spec No.): 68–72.

    PubMed  Google Scholar 

  44. Matsuzawa Y, Shimomura I, Nakamura T, Keno Y, Tokunaga K . Pathophysiology and pathogenesis of visceral fat obesity. Diabetes Res Clin Pract 1994; 24 (Suppl): S111–S116.

    Article  Google Scholar 

  45. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, de Oliveira RM, Leid M, McBurney MW, Guarente L . SIRT1 promotes fat mobilization in white adipocytes by repressing PPARγ. Nature 2004; 429: 771–776.

    Article  CAS  Google Scholar 

  46. Hwangbo DS, Gersham B, Tu MP, Palmer M, Tatar M . Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 2004; 429: 562–566.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the organizers of this symposium and members of the Guarente lab for support and discussion. The postdoctoral studies of Frédéric Picard were in part supported by the CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Picard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picard, F., Guarente, L. Molecular links between aging and adipose tissue. Int J Obes 29 (Suppl 1), S36–S39 (2005). https://doi.org/10.1038/sj.ijo.0802912

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802912

Keywords

This article is cited by

Search

Quick links