Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Pediatric Highlight
  • Published:

Effects of a multidisciplinary weight loss intervention on anaerobic and aerobic aptitudes in severely obese adolescents

Abstract

OBJECTIVE: To investigate if a multidisciplinary weight loss programme in adolescents suffering severe obesity allows an improvement of anaerobic and aerobic aptitudes.

DESIGN: In all, 55 adolescents (33 girls and 22 boys) suffering from severe obesity were enrolled in an interdisciplinary weight reduction programme lasting 6–12 months. Progressive submaximal physical activity was performed and national dietary allowances for adolescents with low levels of physical activity were provided.

MEASUREMENTS: Total and regional body composition and anaerobic aptitudes (handgrip strength (HGS), vertical jump height (VJH)) and aerobic aptitudes (maximal aerobic power (MAP), maximal oxygen uptake (VO2max)) were measured before and after weight loss.

RESULTS: The mean reduction of body mass index (BMI) was similar in girls (21.4±5.9%) and boys (23.7±6.4%). Fat mass (FM) steepest drop was observed in the trunk (−63.2±10.1% in boys and −51.5±11.4% in girls). The total lean mass (LM) did not vary in both sexes. Right HGS and VJH increased in both sexes (P<0.05), whereas left HGS increased only in boys. MAP and VO2max per kg BW increased (P< 0.0001) in both sexes (2.3±0.3 vs 1.7±0.3 W/kg and 32.8±4.5 vs 26.7±4.1 ml/min/kg in girls and 2.8±1.9 vs 1.9±0.4 W/kg and 39.1±6.3 vs 27.9±5.1 ml/min/kg in boys, respectively), whereas MAP and VO2max in absolute value and per kg LM increased only in boys (P=0.04). Total LM was the strongest determinant of HGS, VJH, MAP and VO2max in both sexes (P<0.005).

CONCLUSIONS: Multidisciplinary weight reduction programme including moderate dietary restriction in combination with regular physical training induced an improvement of anaerobic and aerobic aptitudes, a marked reduction of obesity and a preservation of LM in severely obese adolescents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Rolland-Cachera MF, Castebon K, Arnaud N, Bellise F, Romano MC, Lehingue Y, Frelut MF . Body mass index in 7 to 9-y old French children: frequency of obesity, overweight and thinness. Int J Obes 2002; 26: 1610–1616.

    Article  Google Scholar 

  2. Bar-Or O, Foreyt J, Bouchard C, Brownell KD, Dietz WH, Ravussin E, Salbe AD, Schwenger S, St Jeor S, Torun B . Physical activity, genetic, and nutritional considerations in childhood weight management. Med Sci Sports Exerc 1998; 30: 2–10.

    Article  CAS  PubMed  Google Scholar 

  3. Dietz WH . Health consequences of obesity in youth: childhood predictors of adult disease. Pediatrics 1998; 101: 518–525.

    CAS  PubMed  Google Scholar 

  4. Must A, Jacques PF, Dallai GE, Bajema CJ, Dietz WH . Long-term morbidity and mortality of overweight adolescents: a follow-up of the Havard Growth Study of 1922 to 1935. N Engl J Med 1992; 327: 1350–1355.

    Article  CAS  PubMed  Google Scholar 

  5. Epstein LH, Myers MD, Raynor HA, Saelens BE . Treatment of pediatric obesity. Pediatrics 1998; 101: 554–570.

    CAS  PubMed  Google Scholar 

  6. Epstein LH, Goldfield GS . Physical activity in the treatment of childhood overweight and obesity: current evidence and research issues. Med Sci Sports Exerc 1999; 31: S553–S559.

    Article  CAS  PubMed  Google Scholar 

  7. Parizkova J, Maffeis C, Poskitt ME . Management through activity. In: Burniat W, Cole T, Lissau I, Poskit E (eds) Child and Adolescent obesity. Cambridge University Press: Cambridge; 2002. 306–307.

    Google Scholar 

  8. Sothern MS . Exercise as a modality in the treatment of childhood obesity. Pediatr Clin N Am 2001; 48: 995–1015.

    Article  CAS  Google Scholar 

  9. Gately PJ, Cooke CB, Butterly RJ, Mackreth P, Carroll S . The effects of a children's summer camp program on weight loss with a 10 month follow-up. Int J Obes 2000; 24: 1445–1452.

    Article  CAS  Google Scholar 

  10. Frelut ML . Interdisciplinary residential management. In: Burniat W, Cole T, Lissau L, Poskitt E (eds) Child and Adolescent obesity. Cambridge University Press: Cambridge, MA; 2002. 377–386.

    Chapter  Google Scholar 

  11. Svendsen OL, Haarbo J, Hassager C, Christiansen C . Accuracy of measurements of body composition by dual energy X ray absorptiometry in vivo. Am J Clin Nutr 1993; 57: 605–608.

    Article  CAS  PubMed  Google Scholar 

  12. Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D . Total body skeletal muscle mass: estimation by a new dual energy X-ray absorptiometry method. Am J Clin Nutr 2002; 76: 378–383.

    Article  CAS  PubMed  Google Scholar 

  13. Ogle GD, Allen JR, Humphries IR, Lu PW, Briody JN, Morley K, Howman-Giles R, Cowell CT . Body composition assessment by dual energy X-ray absorptiometry in subjects aged 4–26 y. Am J Clin Nutr 1995; 61: 746–753.

    Article  CAS  PubMed  Google Scholar 

  14. Boot AM, Bouquet J, De Ridder MAJ, Krenning EP, De Muinck Keizeir-Schrama SM . Determinants of body composition measured by dual energy X-ray absorptiometry in Dutch children and adolescents. Am J Clin Nutr 1997; 66: 232–238.

    Article  CAS  PubMed  Google Scholar 

  15. Bar-Or O . Pediatric Sports Medicine. Springer Verlag: Berlin; 1983. 353pp.

    Google Scholar 

  16. Rolland-Cachera MF, Cole TJ, Sempe M, Tichet J, Rossignol C, Charraud A . Body mass index variations: percentile from birth to 87 years. Eur J Clin Nutr 1991; 45: 13–21.

    CAS  PubMed  Google Scholar 

  17. Tanner JM, Whitehouse RH . Clinical longitudinal standards for height, weight, height velocity and weight velocity and stages of puberty. Arch Dis Child 1976; 51: 170–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vermorel M . Evaluation des apports conseillés en énergie pour les différentes tranches d'âge. In: Martin A (ed) Apports nutritionnels conseillés pour la population française. Lavoisier: Paris; 2001. pp 257–259.

    Google Scholar 

  19. Hologic QDR-1000/W™. Operator's Manual and User's guide. Hologic Inc.: Waltham, MA; 1990.

  20. Dao HH, Frelut ML, Oberlin F, Peres G, Bourgeois P, Navarro J . Effects of multidisciplinary weight loss intervention on body composition in obese adolescent. Int J Obes 2004; 28: 290–299.

    Article  CAS  Google Scholar 

  21. Mathiowetz V, Wiemer DM, Federman SM . Grip and pinch strength: norms for 6 to 19 years-olds. Am J Occup Ther 1986; 40: 705–711.

    Article  CAS  PubMed  Google Scholar 

  22. Blake A, Miller WC, Brown DA . Adiposity does not hinder the fitness response to exercise training in obese women. J Sports Med Phys Fitness 2000; 40: 170–177.

    CAS  PubMed  Google Scholar 

  23. Le Gall F, Beillot J, Rochcongar P . Evolution de la puissance maximale anaérobie au cours de la croissance chez le footballeur. Sci Sports 2002; 17: 177–188.

    Article  Google Scholar 

  24. Astrand P, Rodahl L . Body dimension and muscular exercise. In: Astrand P, Rodahl L (eds) Textbook of Work Physiology, 3rd edn McGraw-Hill: New York; 1986. 391–411.

    Google Scholar 

  25. Reybrouk TJ, Vinckx J, Van den Berghe G, Vanderschueren-Lodeweyckx M . Exercise therapy and hypocaloric diet in the treatment of obese children and adolescents. Acta Paediatr Scand 1990; 79: 84–89.

    Article  Google Scholar 

  26. Dupuis JM, Vivant JF, Daudet G, Bouvet A, Clément M, Dazord A, Dumet N, David M, Bellon G . Entraînement sportif personnalisé dans la prise en charge de garçons obèses âgés de 12 à 16 ans. Arch Pédiatr 2000; 7: 1185–1193.

    Article  CAS  PubMed  Google Scholar 

  27. Figueroa-Colon R, Mayo MS, Aldridge RA, Winder T, Weinsier RL . Body composition changes in Caucasian and African American children and adolescents with obesity using dual energy X-ray absorptiometry measurements after a 10 week weight loss program. Obes Res 1998; 6: 326–331.

    Article  CAS  PubMed  Google Scholar 

  28. Sartorio A, Lafortuna CL, Pogliaghi S, Trecate L . The impact of gender, body dimension and body composition on hand-grip strength in healthy children. J Endocrinol Invest 2002; 25: 431–435.

    Article  CAS  PubMed  Google Scholar 

  29. Neu CM, Rauch F, Rittweger J, Manz F, Schoenau E . Influence of puberty on muscle development at the forearm. Am J Physiol Endocrinol Metab 2002; 283: E103–E107.

    Article  CAS  PubMed  Google Scholar 

  30. Jones MA, Hitchen PJ, Stratton G . The importance of considering biological maturity when assessing physical fitness measures in girls and boys aged 10–16 years. Ann Hum Biol 2000; 27: 57–65.

    Article  CAS  PubMed  Google Scholar 

  31. Kitagawa K, Miyashita M . Muscle strengths in relation to fat storage rate in young men. Eur J Appl Physiol 1978; 38: 189–196.

    Article  CAS  Google Scholar 

  32. Hulens M, Vansant G, Lysens R, Claessens AL, Muls E, Brumagne S . Study of differences in peripheral muscle strength of lean versus obese women: an allometric approach. Int J Obes 2001; 25: 676–681.

    Article  CAS  Google Scholar 

  33. Pronk NP, Donnely JE, Pronk SJ . Strength changes induced by extreme dieting and exercise in severely obese females. Am Coll Nutr 1992; 11: 152–158.

    CAS  Google Scholar 

  34. Donnely JE, Sharp T, Houmard T, Carlson MG, Hill GO, Whateley JE, Isarel RG . Muscle hypertrophy with large scale weight loss and resistance training. Am J Clin Nutr 1993; 58: 561–565.

    Article  Google Scholar 

  35. Kraemer WJ, Volek JS, Clark KL, Gordon SE, Puhl SM, Koziris LP, McBride JM, Triplett-McBride NT, Putukian M, Newton RU, Hakkinen K, Bush JA, Sebastianelli WJ . Influence of exercise on physiological and performance changes with weight loss in men. Med Sci Sports Exerc 1999; 31: 1320–1329.

    Article  CAS  PubMed  Google Scholar 

  36. Gutin B, Cucuzzo N, Islam S, Smith C, Moffatt R, Pargman D . Physical training improves body composition of black obese 7 to 11 year old girls. Obes Res 1995; 3: 305–312.

    Article  CAS  PubMed  Google Scholar 

  37. Treuth MS, Hunter GR, Pichon C, Figueroa-Colon R, Goran MI . Fitness and energy expenditure after strength training in obese prepubertal girls. Med Sci Sports Exerc 1998; 30: 1130–1136.

    Article  CAS  PubMed  Google Scholar 

  38. Barbeau P, Gutin B, Litaker M, Owens S, Riggs S, Okuyama T . Correlates of individual differences in body composition changes resulting from physical training in obese children. Am J Clin Nutr 1999; 69: 705–711.

    Article  CAS  PubMed  Google Scholar 

  39. Lafortuna CL, Fumagalli E, Vangeli V, Sartorio A . Lower limb alactic anaerobic power output assessed with different techniques in morbid obesity. J Endocrinol Invest 2002; 25: 134–141.

    Article  CAS  PubMed  Google Scholar 

  40. Kitagawa K, Suzuki M, Miyashita M . Anaerobic power output of young obese men: comparison with non obese men and the role of excess fat. Eur J Appl Physiol 1980; 43: 229–234.

    Article  CAS  Google Scholar 

  41. Bosco C . Adaptive response of human skeletal muscle to stimulated hypergravity condition. Acta Physiol Scand 1985; 124: 507–523.

    Article  CAS  PubMed  Google Scholar 

  42. Blimkie CJ, Sale DG, Bar-Or O . Voluntary strength, evoked twitch contractile properties and motor unit activation of knee extensors in obese and non obese adolescent males. Eur J Appl Physiol 1990; 61: 313–318.

    Article  CAS  Google Scholar 

  43. Duche P, Ducher G, Lazzer S, Dore E, Taihardat M, Bedu M . Peak power in obese and non obese adolescents: effects of gender and braking force. Med Sci Sports Exerc 2002; 34: 2072–2078.

    Article  PubMed  Google Scholar 

  44. Davies CT, Young K . Effects of external loading on short term power output in children and young male adults. Eur J Appl Physiol 1984; 52: 351–354.

    Article  CAS  Google Scholar 

  45. Maffeis C, Zaffanello M, Zoccante L, Schutz Y, Pinelli L . Maximal aerobic power during running and cycling in obese and non-obese children. Acta Paediatr 1994; 114: 957–962.

    Google Scholar 

  46. Huttunen NP, Knip M, Paavilainen T . Physical activity and fitness in obese children. Int J Obes 1986; 10: 519–525.

    CAS  PubMed  Google Scholar 

  47. Rocchini AP, Katch V, Anderson J, Hinderliter J, Becque MD, Martin M, Mark C . Blood pressure in obese adolescents: effect of weight loss. Pediatrics 1988; 82: 16–23.

    CAS  PubMed  Google Scholar 

  48. Becque MD, Katch VL, Rocchini AP, Marks CR, Moorehead C . Coronary risk incidence of obese adolescents: reduction by exercise plus diet intervention. Pediatrics 1998; 88: 605–612.

    Google Scholar 

  49. Sothern MS, Loftin JM, Blecker U, Udall JN . Impact of significant weight loss on maximal oxygen uptake in obese children and adolescents. J Invest Med 2000; 48: 411–416.

    CAS  Google Scholar 

  50. Goran MI, Fields DA, Hunter GR, Herd SL, Weinsier RL . Total fat does not influence maximal aerobic capacity. Int J Obes 2000; 24: 841–848.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Peres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dao, H., Frelut, ML., Peres, G. et al. Effects of a multidisciplinary weight loss intervention on anaerobic and aerobic aptitudes in severely obese adolescents. Int J Obes 28, 870–878 (2004). https://doi.org/10.1038/sj.ijo.0802535

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802535

Keywords

This article is cited by

Search

Quick links