Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Ventromedial hypothalamus lesions induce jejunal epithelial cell hyperplasia through an increase in gene expression of cyclooxygenase

Abstract

BACKGROUND: We demonstrated that ventromedial hypothalamus (VMH) lesions facilitate DNA synthesis, which reflects cell proliferation in abdominal organs, including the liver, pancreas, stomach, small intestine and large intestine, all of which are amply innervated by the vagal nerve.

OBJECTIVE: To investigate which area DNA synthesis facilitates and what factors contribute to cell proliferation in the small intestine in VMH-lesioned rats.

DESIGN: At 7 days after VMH lesions or sham operations, a segment of rat jejunum was taken for histological examination. A part of the jejunum was also removed from VMH-lesioned and sham-operated rats after 3 days and examined for 5-bromo-2′-deoxyuridine (BrdU) incorporation. At 6, 12 and 24 h after VMH lesions, the proximal intestine was removed from individual rats, from the pylorus to the mid-jejunum. Total RNA was extracted from these tissues of each rat, and the levels of epidermal growth factor (EGF) and transforming growth factor (TGF)-α mRNA were determined using reverse-transcription polymerase chain reaction. Cyclooxygenase (COX)-1 and -2 mRNA levels were determined using Northern blotting.

RESULTS: Jejunal villi in VMH-lesioned rats were markedly enlarged compared to those of sham-operated rats and jejunal crypts in VMH-lesioned rats more markedly incorporated BrdU. Northern blot analysis revealed an increase in COX-1 mRNA after 6, 12 and 24 h in the jejunum of VMH-lesioned rats. COX-2 mRNA was decreased 6 and 12 h after VMH lesioning; however, it was significantly increased 24 h after VMH lesions in comparison to sham-operated rats. The levels of EGF and TGF-α mRNA were unchanged in VMH lesioned rats.

CONCLUSION: VMH lesions induced enlargement of jejunal villi and increased the gene expression of COX-1 in the small intestine. Prostaglandins, probably E2, induced by COX-1 may be one candidate factor responsible for the cell proliferation of the small intestinal epithelium in these rats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cheng H, Leblond CP . Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat 1974;141:537–561.

    Article  CAS  Google Scholar 

  2. Schmidt GH, Wilkinson MM, Ponder BA . Cell migration pathway in the intestinal epithelium: an in situ marker system using mouse aggregation chimeras. Cell 1985;40:425–429.

    Article  CAS  Google Scholar 

  3. Cohn SM, Simon TC, Roth KA, Birkenmeier EH, Gordon JI . Use of transgenic mice to map cis-acting elements in the intestinal fatty acid binding protein gene (Fabpi) that control its cell lineage-specific and regional patterns of expression along the duodenal–colonic and crypt–villus axes of the gut epithelium. J Cell Biol 1992;119:27–44.

    Article  CAS  Google Scholar 

  4. Winton DJ, Ponder BA . Stem-cell organization in mouse small intestine. Proc R Soc Lond B 1990;241:13–18.

    Article  CAS  Google Scholar 

  5. Inoue S, Bray GA . An autonomic hypothesis for hypothalamic obesity. Life Sci 1979;25:561–566.

    Article  CAS  Google Scholar 

  6. Bray GA, Inoue S, Nishizawa Y . Hypothalamic obesity. The autonomic hypothesis and the lateral hypothalamus. Diabetologia 1981;20(Suppl):366–377.

    Article  CAS  Google Scholar 

  7. Hales CN, Kennedy GC . Plasma glucose, non-esterified fatty acid and insulin concentrations in hypothalamic-hyperphagic rats. Biochem J 1964;90:620–624.

    Article  CAS  Google Scholar 

  8. Inoue S, Bray GA . The effects of subdiaphragmatic vagotomy in rats with ventromedial hypothalamic obesity. Endocrinology 1977;100:108–114.

    Article  CAS  Google Scholar 

  9. Satoh N, Ogawa Y, Katsuura G, Tsuji T, Masuzaki H, Hiraoka J, Okazaki T, Tamaki M, Hayase M, Yoshimasa Y, Nishi S, Hosoda K, Nakao K . Pathophysiological significance of the obese gene product, leptin, in ventromedial hypothalamus (VMH)-lesioned rats: evidence for loss of its satiety effect in VMH-lesioned rats. Endocrinology 1997;138:947–954.

    Article  CAS  Google Scholar 

  10. Suga A, Hirano T, Kageyama H, Kashiba M, Oka J, Osaka T, Namba Y, Tsuji M, Miura M, Adachi M, Inoue S . Rapid increase in circulating leptin in ventromedial hypothalamus-lesioned rats: role of hyperinsulinemia and implication for upregulation mechanism. Diabetes 1999;48:2034–2038.

    Article  CAS  Google Scholar 

  11. Fox EA, Powley TL . Regeneration may mediate the sparing of VMH obesity observed with prior vagotomy. Am J Physiol 1984;247(2 Part 2):R308–R317.

    CAS  PubMed  Google Scholar 

  12. Yoshimatsu H, Niijima A, Oomura Y, Yamabe K, Katafuchi T . Effects of hypothalamic lesion on pancreatic autonomic nerve activity in the rat. Brain Res 1984;303:147–152.

    Article  CAS  Google Scholar 

  13. Kiba T, Tanaka K, Inoue S, Endo O, Takamura Y . Comparison of DNA contents of visceral organs in rats with ventromedial hypothalamic lesions and fed a high fat diet. Neurosci Lett 1991;126:127–130.

    Article  CAS  Google Scholar 

  14. Kiba T, Tanaka K, Endo O, Inoue S . Role of vagus nerve in increased DNA synthesis after hypothalamic ventromedial lesions in rat liver. Am J Physiol 1992;262(3 Part 1):G483–G487.

    CAS  PubMed  Google Scholar 

  15. Kiba T, Tanaka K, Numata K, Hoshino M, Misugi K, Inoue S . Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation. Gastroenterology 1996;110:885–893.

    Article  CAS  Google Scholar 

  16. Kiba T, Tanaka K, Endo O, Inoue S . Ventromedial hypothalamic lesions increase gastrointestinal DNA synthesis through vagus nerve in rats. Gastroenterology 1993;104:475–484.

    Article  CAS  Google Scholar 

  17. Derynck R . Transforming growth factor-alpha: structure and biological activities. J Cell Biochem 1986;32:293–304.

    Article  CAS  Google Scholar 

  18. Goodlad RA, Wright NA . Epidermal growth factor and transforming growth factor-alpha actions on the gut. Eur J Gastroenterol Hepatol 1995;7:928–932.

    Article  CAS  Google Scholar 

  19. Berlanga-Acosta J, Playford RJ, Mandir N, Goodlad RA . Gastrointestinal cell proliferation and crypt fission are separate but complementary means of increasing tissue mass following infusion of epidermal growth factor in rats. Gut 2001;48:803–807.

    Article  CAS  Google Scholar 

  20. Uribe A, Johansson C, Rubio C . Cell proliferation of the rat gastrointestinal mucosa after treatment with E2 prostaglandins and indomethacin. Digestion 1987;36:238–245.

    Article  CAS  Google Scholar 

  21. Uribe A, Alam M, Midtvedt T . E2 prostaglandins modulate cell proliferation in the small intestinal epithelium of the rat. Digestion 1992;52:157–164.

    Article  CAS  Google Scholar 

  22. Barrandon Y, Green H . Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-alpha and epidermal growth factor. Cell 1987;50:1131–1137.

    Article  CAS  Google Scholar 

  23. Cohn SM, Schloemann S, Tessner T, Seibert K, Stenson WF . Crypt stem cell survival in the mouse intestinal epithelium is regulated by prostaglandins synthesized through cyclooxygenase-1. J Clin Invest 1997;99:1367–1379.

    Article  CAS  Google Scholar 

  24. Uribe A, Johansson C, Rubio C, Arndt J . Effects of 16,16 dimethyl prostaglandin E2 on irradiation damage of the small intestine. Acta Radiol Oncol 1984;23:349–352.

    Article  CAS  Google Scholar 

  25. Johansson C, Uribe A, Rubio C, Isenberg JI . Effect of oral prostaglandin E2 on DNA turnover in gastric and intestinal epithelia of the rat. Eur J Clin Invest 1986;16:509–514.

    Article  CAS  Google Scholar 

  26. Feng L, Sun W, Xia Y, Tang WW, Chanmugam P, Soyoola E, Wilson CB, Hwang D . Cloning two isoforms of rat cyclooxygenase: differential regulation of their expression. Arch Biochem Biophys 1993;307:361–368.

    Article  CAS  Google Scholar 

  27. Ristimaki A, Narko K, Hla T . Down-regulation of cytokine-induced cyclo-oxygenase-2 transcript isoforms by dexamethasone: evidence for post-transcriptional regulation. Biochem J 1996;318(Part 1):325–331.

    Article  CAS  Google Scholar 

  28. O'Neill GP, Ford-Hutchinson AW . Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett 1993;330:156–160.

    Article  CAS  Google Scholar 

  29. Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P . Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA 1994;91:12013–12017.

    Article  CAS  Google Scholar 

  30. Hamasaki Y, Kitzler J, Hardman R, Nettesheim P, Eling TE . Phorbol ester and epidermal growth factor enhance the expression of two inducible prostaglandin H synthase genes in rat tracheal epithelial cells. Arch Biochem Biophys 1993;304:226–234.

    Article  CAS  Google Scholar 

  31. DuBois RN, Awad J, Morrow J, Roberts II LJ, Bishop PR . Regulation of eicosanoid production and mitogenesis in rat intestinal epithelial cells by transforming growth factor-alpha and phorbol ester. J Clin Invest 1994;93:493–498.

    Article  CAS  Google Scholar 

  32. Crofford LJ, Wilder RL, Ristimaki AP, Sano H, Remmers EF, Epps HR, Hla T . Cyclooxygenase-1 and -2 expression in rheumatoid synovial tissues. Effects of interleukin-1 beta, phorbol ester, and corticosteroids. J Clin Invest 1994;93:1095–1101.

    Article  CAS  Google Scholar 

  33. Masferrer JL, Zweifel BS, Manning PT, Hauser SD, Leahy KM, Smith WG, Isakson PC, Seibert K . Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc Natl Acad Sci USA 1994;91:3228–3232.

    Article  CAS  Google Scholar 

  34. Allison MC, Howatson AG, Torrance CJ, Lee FD, Russell RI . Gastrointestinal damage associated with the use of nonsteroidal antiinflammatory drugs. N Engl J Med 1992;327:749–754.

    Article  CAS  Google Scholar 

  35. Soll AH, Weinstein WM, Kurata J, McCarthy D . Nonsteroidal anti-inflammatory drugs and peptic ulcer disease. Ann Intern Med 1991;114:307–319.

    Article  CAS  Google Scholar 

  36. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN . Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994;107:1183–1188.

    Article  CAS  Google Scholar 

  37. Kargman SL, O'Neill GP, Vickers PJ, Evans JF, Mancini JA, Jothy S . Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer. Cancer Res 1995;55:2556–2559.

    CAS  PubMed  Google Scholar 

  38. Muller-Decker K, Scholz K, Marks F, Furstenberger G . Differential expression of prostaglandin H synthase isozymes during multistage carcinogenesis in mouse epidermis. Mol Carcinogen 1995;12:31–41.

    Article  CAS  Google Scholar 

  39. Zaia TB, Oller do Nascimento CM, Timo-Iaria C, Dolnikoff MS . Time course of insulin, corticosterone and metabolic changes caused by lesion of the ventromedial hypothalamus in the rat. Physiol Behav 1987;39:707–714.

    Article  CAS  Google Scholar 

  40. Zhang MZ, Harris RC, McKanna JA . Regulation of cyclooxygenase-2 (COX-2) in rat renal cortex by adrenal glucocorticoids and mineralocorticoids. Proc Natl Acad Sci USA 1999;96:15280–15285.

    Article  CAS  Google Scholar 

  41. Herschman HR . Prostaglandin synthase 2. Biochim Biophys Acta 1996;1299:125–140.

    Article  Google Scholar 

  42. Dembinski A, Konturek SJ . Effects of E, F, and I series prosta-glandins and analogues on growth of gastroduodenal mucosa and pancreas. Am J Physiol 1985;248(2 Part 1):G170–G175.

    CAS  PubMed  Google Scholar 

  43. Uribe A, Rubio C, Johansson C . Cell kinetics of rat gastrointestinal mucosa. Autoradiographic study after treatment with 15(R)15-methyl-prostaglandin E2. Scand J Gastroenterol 1986;21:246–252.

    Article  CAS  Google Scholar 

  44. Uribe A, Tribukait B, Johansson C . Cell cycle distribution of proliferative and functional cells of the rat jejunum after treatment with oral E2 prostaglandins. Scand J Gastroenterol 1987;22:177–184.

    Article  CAS  Google Scholar 

  45. Piper P, Vane J . The release of prostaglandins from lung and other tissues. Ann NY Acad Sci 1971;180:363–385.

    Article  CAS  Google Scholar 

  46. Singh J . Prostaglandin release from rat stomach following vagal stimulation or administration of acetylcholine. Eur J Pharmacol 1980;65:39–48.

    Article  CAS  Google Scholar 

  47. Maier JA, Hla T, Maciag T . Cyclooxygenase is an immediate-early gene induced by interleukin-1 in human endothelial cells. J Biol Chem 1990;265:10805–10808.

    CAS  PubMed  Google Scholar 

  48. Masferrer JL, Seibert K, Zweifel B, Needleman P . Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme. Proc Natl Acad Sci USA 1992;89:3917–3921.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Priority Research of Japan Science and Technology Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Inoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kageyama, H., Kageyama, A., Endo, Y. et al. Ventromedial hypothalamus lesions induce jejunal epithelial cell hyperplasia through an increase in gene expression of cyclooxygenase. Int J Obes 27, 1006–1013 (2003). https://doi.org/10.1038/sj.ijo.0802325

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802325

Keywords

This article is cited by

Search

Quick links