Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Skeletal muscle low attenuation area and maximal fat oxidation rate during submaximal exercise in male obese individuals

A Corrigendum to this article was published on 27 September 2002

Abstract

BACKGROUND: Muscle triacylglycerols (TG) are known to be a source of energy during submaximal exercise.

OBJECTIVE: The aim of this study was to assess whether an index of muscle fat content is related to maximal fat oxidation rate (FATOXmax) in 58 obese men (mean age 45.5±0.8 (s.e.) y, body weight 95.3±1.4 kg, percentage fat 31.1±0.6%).

DESIGN: FATOXmax was defined as the highest value of fat oxidation rate, measured by indirect calorimetry, while walking on a treadmill (4.3 km/h) at three different slopes: 0% (40±1% of VO2max), 3% (47±1% of VO2max) and 6% (58±1% of VO2max). Fat-free mass (FFM) and fat mass (FM) were measured with the underwater technique and scans were obtained by computed tomography (CT) at the mid thigh level to assess areas of adipose tissue within skeletal muscle, ie deep adipose tissue (DAT), subcutaneous adipose tissue (SAT), skeletal muscle (M) and low attenuation skeletal muscle (LAM, range of attenuation values 0–34 Hounsfield units). LAM and DAT were used as indices of skeletal muscle fat content.

RESULTS: FATOXmax, adjusted for age, was correlated with FFM (r=0.25, P<0.05), LAM (r=0.28, P<0.05), DAT (r=0.23, P<0.05), abdominal visceral adipose tissue (r=0.26, P<0.05) and plasma free fatty acid (FFA) levels (r=0.36, P<0.05) but not with SAT (r=0.07). In a stepwise linear multiple regression, plasma FFA, age and LAM significantly predicted FATOXmax (r2=0.27). Each independent variable explained about 9% of the FATOXmax variance.

CONCLUSION: LAM makes a significant but weak contribution to the modulation of fat oxidation during submaximal exercise in obese men.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR . Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration Am J Physiol 1993 265: (3 Pt 1): E380–391.

    Google Scholar 

  2. Turcotte LP, Richter EA, Kiens B . Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans Am J Physiol 1992 262: (6 Pt I): E791–799.

    Google Scholar 

  3. Hurley BF, Nemeth PM, Martin WH III, Hagberg JM, Dalsky GP, Holloszy JO . Muscle triglyceride utilization during exercise: effect of training J Appl Physiol 1986 60: 562–567.

    Article  CAS  PubMed  Google Scholar 

  4. Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE . Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat Diabetes 1997 46: 1579–1585.

    Article  CAS  PubMed  Google Scholar 

  5. Simoneau JA, Colberg SR, Thaete FL, Kelley DE . Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women FASEB J 1995 9: 273–278.

    Article  CAS  PubMed  Google Scholar 

  6. Vock R, Hoppeler H, Claassen H, Wu DX, Billeter R, Weber JM, Taylor CR, Weibel ER . Design of the oxygen and substrate pathways. VI. structural basis of intracellular substrate supply to mitochondria in muscle cells J Exp Biol 1996 199: (Pt 8): 1689–1697.

    Google Scholar 

  7. Meneely GR, Kaltreider NL . Volume of the lung determined by helium dilution J Clin Invest 1949 28: 129–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Siri WE . The gross composition of the body Adv Biol Med Phys 1956 4: 239–280.

    Article  CAS  PubMed  Google Scholar 

  9. Noma AQ, Okabe O, Kita M . A new colorimetric microdetermination of free fatty acids in serum Clin Chim Acta 1973 43: 317–320.

    Article  CAS  PubMed  Google Scholar 

  10. Richterich R, Dauvalder H . Zur bestimmung der plasma-glukosekonzentration mit der hexokinase-glucose-6-phosphat-dehydrogenase-methode Schweiz Med Wochenschr 1973 101: 615–618.

    Google Scholar 

  11. Desbuquois B, Aurbach GD . Use of polyethylene glycol to separate free and antibody-bound peptide hormones in radioimmunoassays J Clin Endocrinol Metab 1971 37: 732–738.

    Article  Google Scholar 

  12. Livesey G, Elia M . Estimation of energy expenditure, net carbohydrate utilization, and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels. [Published erratum appears in Am J Clin Nutr 1989; 50: 1475]. Am J Clin Nutr 1988 47: 608–628.

    Article  CAS  PubMed  Google Scholar 

  13. Jequier E, Acheson K, Schutz Y . Assessment of energy expenditure and fuel utilization in man A Rev Nutr 1987 7: 187–208.

    Article  CAS  Google Scholar 

  14. Ravussin E, Bogardus C, Scheidegger K, LaGrange B, Horton ED, Horton ES . Effect of elevated FFA on carbohydrate and lipid oxidation during prolonged exercise in humans J Appl Physiol 1986 60: 893–900.

    Article  CAS  PubMed  Google Scholar 

  15. Kelley DE, Slasky BS, Janosky J . Skeletal muscle density: effects of obesity and non-insulin-dependent diabetes mellitus Am J Clin Nutr 1991 54: 509–515.

    Article  CAS  PubMed  Google Scholar 

  16. Dwyer A, Doppman JL, Adams AJ, Girton ME, Chernick SS, Cornblath M . Influence of glycogen on liver density: computed tomography from a metabolic perspective J Comput Assist Tomogr 1983 7: 70–73.

    Article  CAS  PubMed  Google Scholar 

  17. Tofts PS . Definitions of effective energy in computed tomography Phys Med Biol 1981 26: 313–317.

    Article  CAS  PubMed  Google Scholar 

  18. Forsberg AM, Nilsson E, Werneman J, Bergstrom J, Hultman E . Muscle composition in relation to age and sex Clin Sci (Colch) 1991 81: 249–256.

    Article  CAS  Google Scholar 

  19. Grindrod S, Tofts P, Edwards R . Investigation of human skeletal muscle structure and composition by X-ray computerised tomography Eur J Clin Invest 1983 13: 465–468.

    Article  CAS  PubMed  Google Scholar 

  20. Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG . Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. [See comments]. New Engl J Med 1990 322: 223–228.

    Article  CAS  PubMed  Google Scholar 

  21. Goodpaster BH, Kelley DE . Role of muscle in triglyceride metabolism Curr Opin Lipidol 1998 9: 231–236.

    Article  CAS  PubMed  Google Scholar 

  22. Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA, Bogardus C, Jenkins AB, Storlien LH . Skeletal muscle triglyceride levels are inversely related to insulin action Diabetes 1997 46: 983–988.

    Article  CAS  PubMed  Google Scholar 

  23. Holliday MA . Body composition and energy needs during growth. In: Falkner F, Tanner JM (eds). Human growth Plenum Press: New York 1978 117–139.

    Chapter  Google Scholar 

  24. Sidossis LS, Wolfe RR . Glucose and insulin-induced inhibition of fatty acid oxidation: the glucose-fatty acid cycle reversed Am J Physiol 1996 270: (4 Pt 1): E733–738.

    PubMed  Google Scholar 

  25. Dagenais GR, Tancredi RG, Zierler KL . Free fatty acid oxidation by forearm muscle at rest, and evidence for an intramuscular lipid pool in the human forearm J Clin Invest 1976 58: 421–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McArdle WD, Katch FI, Katch VL . Section 1: nutrition, the base for human performance. In: Balado D (ed). Exercise physiology, 4th ed. Williams & Wilkins: Baltimore, MD 1996 1–61.

    Google Scholar 

  27. Weber JM, Brichon G, Zwingelstein G, McClelland G, Sancedo C, Weibel ER, Taylor CR . Design of the oxygen and substrate pathways. IV. Partitioning energy provision from fatty acids J Exp Biol 1996 199: (Pt 8): 1667–1674.

    Google Scholar 

  28. Calles-Escandon J, Arciero PJ, Gardner AW, Bauman C, Poehlman ET . Basal fat oxidation decreases with aging in women J Appl Physiol 1995 78: 266–271.

    Article  CAS  PubMed  Google Scholar 

  29. Sial S, Coggan AR, Carroll R, Goodwin J, Klein S . Fat and carbohydrate metabolism during exercise in elderly and young subjects. [See comments.] Am J Physiol 1996 271: (6 Pt 1): E983–989.

    Google Scholar 

  30. Groop LC, Bonadonna RC, Shank M, Petrides AS, DeFronzo RA . Role of free fatty acids and insulin in determining free fatty acid and lipid oxidation in man J Clin Invest 1991 87: 83–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nicklas BJ, Goldberg AP, Bunyard LB, Poehlman ET . Visceral adiposity is associated with increased lipid oxidation in obese, postmenopausal women. [See comments.] Am J Clin Nutr 1995 62: 918–922.

    Article  CAS  PubMed  Google Scholar 

  32. Schutz Y, Tremblay A, Weinsier RL, Nelson KM . Role of fat oxidation in the long-term stabilization of body weight in obese women Am J Clin Nutr 1992 55: 670–674.

    Article  CAS  PubMed  Google Scholar 

  33. Kiens B, Essen-Gustavsson B, Christensen NJ, Saltin B . Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training J Physiol (Lond) 1993 469: 459–478.

    Article  CAS  Google Scholar 

  34. Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GJ, Grant SM . Progressive effect of endurance training on metabolic adaptations in working skeletal muscle Am J Physiol 1996 270: (2 Pt 1): E265–272.

    Google Scholar 

  35. Bergman BC, Butterfield GE, Wolfel EE, Casazza GA, Lopaschuk GD, Brooks GA . Evaluation of exercise and training on muscle lipid metabolism. [In Process Citation]. Am J Physiol 1999 276 (1 Pt 1): E106–117.

    CAS  PubMed  Google Scholar 

  36. Martin WH III, Dalsky GP, Hurley BF, Matthews DE, Bier DM, Hagberg JM, Rogers MA, King DS, Holloszy JO . Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise Am J Physiol 1993 265: (5 Pt 1): E708–714.

    Google Scholar 

  37. Martin WH III . Effect of endurance training on fatty acid metabolism during whole body exercise Med Sci Sports Exerc 1997 29: 635–639.

    Article  PubMed  Google Scholar 

  38. Bouchard C, Tremblay A, Nadeau A, Dussault J, Despres JP, Theriault G, Lupien PJ, Serresse O, Boulay MR, Fournier G . Long-term exercise training with constant energy intake. 1: effect on body composition and selected metabolic variables. [Published erratum appears in Int J Obes 1990; 14: 987]. Int J Obes 1990 14: 57–73.

    CAS  PubMed  Google Scholar 

  39. Curtain C, Gordon L, Aloia R . Lipid domains in biological membranes: conceptual development and significance. In: Aloia RC, Curtain CC, Gordon LM (eds). Lipid domains and the relationship to membrane function Liss: New York 1998 1–15.

    Google Scholar 

  40. Sweet W, Schroeder F . Lipid domains and enzyme activity. In: Aloia RC, Curtain CC, Gordon LM (eds). Lipid domains and the relationship to membrane function Liss: New York 1998 17–42.

    Google Scholar 

  41. Laakso M . How good a marker is insulin level for insulin resistance? Am J Epidemiol 1993 137: 959–965.

    Article  CAS  PubMed  Google Scholar 

  42. Felber JP, Ferrannini E, Golay A, Meyer HU, Theiband D, Curchod B, Maeder E, Jequier E, DeFronzo RA . Role of lipid oxidation in pathogenesis of insulin resistance of obesity and type II diabetes Diabetes 1987 36: 1341–1350.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the staff of the two laboratories that were involved in this project for their dedicated work. This work supported by Parke-Davis protocol 710-247 (Gel study). Martine Dumont is the recipient of a fellowship from the Fond de la recherche en santé du Québec-Fond pour la formation de chercheurs et l'aide à la recherche (FRSQ-FCAR santé).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Prud'homme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dériaz, O., Dumont, M., Bergeron, N. et al. Skeletal muscle low attenuation area and maximal fat oxidation rate during submaximal exercise in male obese individuals. Int J Obes 25, 1579–1584 (2001). https://doi.org/10.1038/sj.ijo.0801809

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801809

Keywords

This article is cited by

Search

Quick links