Optics and photonics articles within Nature Communications

Featured

  • Article
    | Open Access

    The authors demonstrated an unprecedented level of polarization squeezing of light generated by an atomic ensemble, and a new regime of continuous quantum measurements on a macroscopic material oscillator.

    • Christian Bærentsen
    • , Sergey A. Fedorov
    •  & Eugene S. Polzik
  • Article
    | Open Access

    Biosensing tools to detect multiple analytes in a high-throughput manner are still hindered by many limitations. Here, the authors present a label-free optofluidic platform integrating digital holography and microfluidics for analyte detection, allowing for the fingerprinting of heterogenous biological samples.

    • Alexia Stollmann
    • , Jose Garcia-Guirado
    •  & Romain Quidant
  • Article
    | Open Access

    Lead toxification in society is a public health crisis. The exposure to lead poisoning gives rise to a multitude of health issues. In this work, a chip-scale photonic platform that enables the highly quantitative detection of lead is demonstrated.

    • Luigi Ranno
    • , Yong Zen Tan
    •  & Jia Xu Brian Sia
  • Article
    | Open Access

    The laser pulses that drive most laser wakefield accelerators have wavelengths near 1 micrometer and peak power > 100 terawatts. Here, the authors drive plasma wakes with 10 micrometer, 2-terawatt pulses, yielding relativistic electron beams with a collimated, narrow-energy-bandwidth component.

    • R. Zgadzaj
    • , J. Welch
    •  & M. C. Downer
  • Article
    | Open Access

    Here the authors have developed a superconducting microwave frequency comb that is fully integrated, easy to manufacture, and operates with ultra-low power consumption, and could significantly advance microwave photonics and quantum processor integration.

    • Chen-Guang Wang
    • , Wuyue Xu
    •  & Peiheng Wu
  • Article
    | Open Access

    Color centers in diamond have been proposed as a link between remote superconducting units in hybrid quantum systems, where their orbital degree of freedom is utilized. Here the authors report coherent electric-field control of the orbital state of a neutral NV center in diamond.

    • Hodaka Kurokawa
    • , Keidai Wakamatsu
    •  & Hideo Kosaka
  • Article
    | Open Access

    Surface acoustic wave devices enable modern electronics and are desirable for quantum systems. Here the authors access and control these devices optically, enabling high acoustic quality factors, materials spectroscopy, and hybrid quantum systems.

    • Arjun Iyer
    • , Yadav P. Kandel
    •  & William H. Renninger
  • Article
    | Open Access

    Carbon nanotube-based single photon emitters allow for room-temperature operation, but suffer from vanishing indistinguishability due to strong dephasing. Following a theoretical proposal, the authors tackle the problem experimentally by using a cavity to enhance the photon coherence time and the emission spectral density in the regime of incoherent good cavity-coupling.

    • Lukas Husel
    • , Julian Trapp
    •  & Alexander Högele
  • Article
    | Open Access

    Inspired by fireflies, a bimodal information indication system using a photochemical afterglow material within a photonic crystal matrix is developed to display both static and changing information, such as sample type and degree of degradation.

    • Hanwen Huang
    • , Jiamiao Yin
    •  & Changchun Wang
  • Article
    | Open Access

    Superconducting nanowire single-photon detectors require operation at T < 4 K, and successful attempts to extend their operation at 20 K and above using high-TC BSCCO flakes come at the cost of lower scalability to large areas. Here, the authors break this trade-off by using high-quality MgB2 films and exploiting a helium-ion beam-based irradiation process.

    • Ilya Charaev
    • , Emma K. Batson
    •  & Karl K. Berggren
  • Article
    | Open Access

    The authors present nonvolatile optical phase shift induced by ferroelectric hafnium zirconium oxide deposited on a SiN waveguide. This finding paves the way for largescale programmable photonic circuits for communication, computing, and sensing.

    • Kazuma Taki
    • , Naoki Sekine
    •  & Mitsuru Takenaka
  • Article
    | Open Access

    Achieving acoustic waveguides with low loss, tailorability, and easy fabrication is a considerable challenge. Here, the authors introduce suspended anti-resonant acoustic waveguides with superior confinement and high selectivity of acoustic modes, supporting both forward and backward SBS on chip.

    • Peng Lei
    • , Mingyu Xu
    •  & Xiaopeng Xie
  • Article
    | Open Access

    Sublattice symmetry has long been synonymous with chiral symmetry when it comes to topological classification. Here, the authors challenge this notion by systematically investigating sublattice symmetry and revealing its spatial nature with a precise description in terms of symmetry algebra and representation.

    • Rong Xiao
    •  & Y. X. Zhao
  • Article
    | Open Access

    Abbe’s diffraction limit has been a defining concept for microscopy. With finite photon, photon noise remains one essential factor yet to be considered in the theoretical resolution limit. Here, the authors introduced information-based resolution limit allowing for photon-considered resolution assessment of various microscopy and super-resolution modalities.

    • Yilun Li
    •  & Fang Huang
  • Article
    | Open Access

    Caustics, as a unique type of singularity in wave phenomena, occur in diverse physical systems. Here, the authors realize multi-dimensional customization of caustics with 3D-printed metasurfaces. This arbitrary caustic engineering is poised to bring new revolutions to many domains.

    • Xiaoyan Zhou
    • , Hongtao Wang
    •  & Cheng-Wei Qiu
  • Article
    | Open Access

    A promising strategy for scaling trapped-ion-based quantum technologies is to use fully integrated optical waveguides to deliver light to numerous ions at multiple sites. Here, the authors. optically address three ions using on-chip waveguides to deliver three distinct wavelengths per ion, and perform Rabi flopping on each ion simultaneously.

    • Joonhyuk Kwon
    • , William J. Setzer
    •  & Hayden J. McGuinness
  • Article
    | Open Access

    Room-temperature phosphorescence usually occurs immediately after the removal of excitation. Here the authors achieve combined instant and delayed phosphorescence through introduction of phosphines into carbazole emitters.

    • Guang Lu
    • , Jing Tan
    •  & Hui Xu
  • Article
    | Open Access

    Silicon-integrated graphene photodetectors exhibit promising bandwidths at telecom wavelengths, but their responsivity is usually limited. Here, the authors report the wafer-scale fabrication of waveguide-integrated detectors based on twisted bilayer graphene, showing responsivities up to 0.65 A/W and 3-dB bandwidths >65 GHz.

    • Qinci Wu
    • , Jun Qian
    •  & Hailin Peng
  • Article
    | Open Access

    Organic mechanoluminescent materials have potential in a range of applications, but it can be challenging to achieve long-lived emission. Here, the authors report isostructural doping as a strategy to achieve multicolour and high efficiency organic mechanoluminescence, applied in stress sensing.

    • Zongliang Xie
    • , Yufeng Xue
    •  & Bin Liu
  • Article
    | Open Access

    The authors present a scalable on-chip parallel intensity modulation and direct detection (IM-DD) data transmission system. This system offers an aggregate line rate of 1.68 Tbit/s over a 20-km-long SMF. For the chromatic dispersion compensation of 40-km-SMFs, the energy consumption is ~0.3 pJ/bit, much less than the commercial 400G-ZR coherent transceivers counterparts.

    • Yuanbin Liu
    • , Hongyi Zhang
    •  & Andrew W. Poon
  • Article
    | Open Access

    Photonic time crystal refers to a material whose dielectric properties oscillate in time. Here the authors theoretically show such behaviour in the excitonic insulator candidate Ta2NiSe5 under optical excitation and use it to explain the enhanced THz reflectivity recently observed in pump-probe experiments

    • Marios H. Michael
    • , Sheikh Rubaiat Ul Haque
    •  & Eugene Demler
  • Article
    | Open Access

    Conventional lighting requires an AC-DC converter for LEDs. Here, the authors report a tandem structure by connecting two QLEDs with opposite polarity in parallel, enabling AC driven operation. A household AC electricity plug-and-play QLEDs panel with tuneable colour and brightness is achieved.

    • Jiming Wang
    • , Cuixia Yuan
    •  & Shuming Chen
  • Article
    | Open Access

    All holographic displays and imaging techniques are fundamentally limited by the étendue supported by existing spatial light modulators. Here, the authors report on using artificial intelligence (AI) to learn an étendue expanding element that effectively increases étendue by two orders of magnitude.

    • Ethan Tseng
    • , Grace Kuo
    •  & Felix Heide
  • Article
    | Open Access

    Optical interference filters are multilayer structures for controlling the propagation of electromagnetic waves. Jin et al. have developed a method of via inkjet printing to fabricate optical interference filters with commercially relevant quality with remarkable A4 paper size (29.7 × 21.0 cm²) in ambient conditions.

    • Qihao Jin
    • , Qiaoshuang Zhang
    •  & Uli Lemmer
  • Article
    | Open Access

    An efficient way of realising a large number of telecom single-photon emitters for quantum communication is still missing. Here, the authors use a wide-field imaging technique for fast localization of single InAs/InP quantum dots, which are then integrated into circular Bragg grating cavities featuring high single-photon purity and indistinguishability.

    • Paweł Holewa
    • , Daniel A. Vajner
    •  & Elizaveta Semenova
  • Article
    | Open Access

    Bound states in continuum have attracted attention in various platforms, and recently condensation of bound states in continuum polariton modes was demonstrated at low temperatures. Here the authors report the observation of such a state in a periodic air-hole perovskite-based photonic crystal at room temperature.

    • Xianxin Wu
    • , Shuai Zhang
    •  & Xinfeng Liu
  • Article
    | Open Access

    Correlated insulator states of moire excitons in transition metal dichalcogenide heterostructures have attracted significant attention recently. Here the authors use time-resolved pump-probe spectroscopy to demonstrate the effects of non-equilibrium correlations of moire excitons in WSe2/WS2 heterobilayers.

    • Jinjae Kim
    • , Jiwon Park
    •  & Hyunyong Choi
  • Article
    | Open Access

    Optical recurrent neural networks present a unique challenge for photonic machine learning. Here, the authors experimentally show the first optoacoustic recurrent operator based on stimulated Brillouin scattering which may unlock a new class of optical neural networks with recurrent functionality.

    • Steven Becker
    • , Dirk Englund
    •  & Birgit Stiller
  • Article
    | Open Access

    The researchers fuse metamaterials and origami technical to achieve ultra-wideband and large-depth reflection modulation. Flexible electronics amplify its lightweight, transparency, and cost-effectiveness, making it ideal for satellite communications.

    • Zicheng Song
    • , Juan-Feng Zhu
    •  & Cheng-Wei Qiu