A checkpoint for insulin secretion

Checkpoint kinase 2 controls insulin secretion and glucose homeostasis

  • Angie Chi Nok Chong
  • J. Jeya Vandana
  • Shuibing Chen
Article

Announcements

  • Drops of dew condensing on leaves

    This themed issue presents a collection of Reviews, Perspectives and Articles that aim to reveal the molecular and chemical principles underlying phase-separated condensate formation and promote the development and use of new tools for the study of phase separation biology.

Nature Chemical Biology is a Transformative Journal; authors can publish using the traditional publishing route OR via immediate gold Open Access.

Our Open Access option complies with funder and institutional requirements.

Advertisement

  • Jiang et al. developed a computational method to design repeat proteins with multiple structured loops that are buttressed by extensive hydrogen bond networks. The designs were further functionalized into high-affinity peptide-binding proteins.

    • Hanlun Jiang
    • Kevin M. Jude
    • David Baker
    ArticleOpen Access
  • Huang et al. report the tertiary structure of a small monomeric fluorogenic RNA aptamer named Clivia, characterized by a large Stokes shift, revealing the fluorescence activation mechanism and enabling a multivalent design to enhance the fluorescence output at specific dye concentrations.

    • Kaiyi Huang
    • Qianqian Song
    • Aiming Ren
    ArticleOpen Access
  • Cathepsins are relevant therapeutic targets in cancer and other diseases. Here, the authors developed a different approach to block the activity of cathepsins in specific cellular contexts by combining non-natural peptide inhibitors with antibodies, enhancing therapeutic efficacy while reducing side effects.

    • Aaron Petruzzella
    • Marine Bruand
    • Elisa Oricchio
    Article
  • Engineered living materials harness the computational power of biology to control interesting material properties. Here the authors leverage complex transcriptional regulation of bacterial extracellular electron transfer to control hydrogel cross-linking with Boolean logic.

    • Austin J. Graham
    • Gina Partipilo
    • Benjamin K. Keitz
    Article
  • Owens et al. reported PFI-7, a selective and potent antagonist of GID4 of the CTLH E3 ligase complex, which enables identification of human GID4 targets. This study provides valuable insights into GID4 functions and a powerful tool for advancing new targeted protein degradation strategies.

    • Dominic D. G. Owens
    • Matthew E. R. Maitland
    • Cheryl H. Arrowsmith
    Article
    • We developed a rational approach to design peptide-based covalent inhibitors and coupled the inhibitors with antibodies for cell-specific delivery. We used this platform to generate antibody–peptide inhibitor conjugates (APICs) that target a family of proteases, the cysteine cathepsins. Our drug design and targeted delivery approach ensure specific inhibition and achieve therapeutic efficacy in different cancer cells and osteoclasts.

      Research Briefing
    • The ZDHHC family of palmitoyl transferases lipidates numerous protein targets, but the paucity of selective inhibitors has hindered their target profiling. A generalized chemical genetic system can now map the protein targets of individual ZDHHC family members.

      • Tong Lan
      • Bryan C. Dickinson
      News & Views
    • Targeted protein degradation has emerged as a promising approach in drug discovery, harnessing a cell’s intrinsic machinery to eliminate disease-related proteins. Now, a study paves the way to translating this technology into potential anti-mycobacterial therapies, by exploiting the bacterial protein-degradation complex.

      • Delia Preti
      • Valentina Albanese
      • Peggy Carla Raffaella Marconi
      News & Views
    • Reliably identifying ubiquitin ligase interactors and substrates has been a persistent challenge in cellular biology. A breakthrough comes in the form of a potent, selective and cell-active chemical probe, shedding light on the intricate functions of a key regulatory enzyme.

      • Shaoshuai Xie
      • Gang Li
      News & Views
    • Natural ribozymes can cleave RNA and single-stranded DNA (ssDNA) by transesterification or a blend of hydrolytic and transesterification reactions. Now, ribozymes have been discovered that catalyze the hydrolytic cleavage of ssDNA. Similar ribozymes could potentially replace large, immunogenic, protein-based nucleases in gene therapies.

      • Madeleine B. King
      • Audrone Lapinaite
      News & Views

Nature Careers

Science jobs

Advertisement