Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exciton polaron formation and hot-carrier relaxation in rigid Dion–Jacobson-type two-dimensional perovskites

Abstract

The efficiency of two-dimensional Dion–Jacobson-type materials relies on the complex interplay between electronic and lattice dynamics; however, questions remain about the functional role of exciton–phonon interactions. Here we establish the robust polaronic nature of the excitons in these materials at room temperature by combining ultrafast spectroscopy and electronic structure calculations. We show that polaronic distortion is associated with low-frequency (30–60 cm−1) lead iodide octahedral lattice motions. More importantly, we discover how targeted ligand modification of this two-dimensional perovskite structure manipulates exciton–phonon coupling, exciton polaron population and carrier cooling. At high excitation density, stronger exciton–phonon coupling increases the hot-carrier lifetime, forming a hot-phonon bottleneck. Our study provides detailed insight into the exciton–phonon coupling and its role in carrier cooling in two-dimensional perovskites relevant for developing emerging hybrid semiconductor materials with tailored properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure, steady-state and time-resolved data of 2D DJ-type perovskites.
Fig. 2: Frequency, phase, amplitude analysis of wavepacket, and impulsive generation of coherent phonons.
Fig. 3: Participating phonon modes, comparison of reorganization energies and exciton polaron formation.
Fig. 4: Manipulation of carrier relaxation via ligand engineering.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and Supplementary Information files. Additional images are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Tsai, H. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017).

    Article  PubMed  Google Scholar 

  2. Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Zhao, X. & Tan, Z.-K. Large-area near-infrared perovskite light-emitting diodes. Nat. Photonics 14, 215–218 (2020).

    Article  CAS  Google Scholar 

  4. Wang, H.-P. et al. Low-dimensional metal halide perovskite photodetectors. Adv. Mater. 33, 2003309 (2021).

    Article  CAS  Google Scholar 

  5. Yin, J. et al. Tuning hot carrier cooling dynamics by dielectric confinement in two-dimensional hybrid perovskite crystals. ACS Nano 13, 12621–12629 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Yin, J. et al. Manipulation of hot carrier cooling dynamics in two-dimensional Dion–Jacobson hybrid perovskites via rashba band splitting. Nat. Commun. 12, 3995 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mayers, M. Z., Tan, L. Z., Egger, D. A., Rappe, A. M. & Reichman, D. R. How lattice and charge fluctuations control carrier dynamics in halide perovskites. Nano Lett. 18, 8041–8046 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Kandada, A. R. S. & Silva, C. Exciton polarons in two-dimensional hybrid metal-halide perovskites. J. Phys. Chem. Lett. 11, 3173–3184 (2020).

    Article  Google Scholar 

  9. Thouin, F. et al. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 18, 349–356 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Li, X. et al. Two-dimensional Dion–Jacobson hybrid lead iodide perovskites with aromatic diammonium cations. J. Am. Chem. Soc. 141, 12880–12890 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Zhao, R. et al. Rigid conjugated diamine templates for stable Dion–Jacobson-type two-dimensional perovskites. J. Am. Chem. Soc. 143, 19901–19908 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

    Article  CAS  Google Scholar 

  13. Zhang, H. et al. Ultrafast relaxation of lattice distortion in two-dimensional perovskites. Nat. Phys. 19, 545 (2023).

    Article  CAS  Google Scholar 

  14. Franchini, C., Reticcioli, M., Setvin, M. & Diebold, U. Polarons in materials. Nat. Rev. Mater. 6, 560–586 (2021).

    Article  CAS  Google Scholar 

  15. Dai, Z., Lian, C., Lafuente-bartolome, J. & Giustino, F. Theory of excitonic polarons: from models to first-principles calculations. Phys. Rev. B 045202, 1–19 (2024).

    Google Scholar 

  16. Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, 1701217 (2017).

    Article  Google Scholar 

  17. Niesner, D. et al. Persistent energetic electrons in methylammonium lead iodide perovskite thin films. J. Am. Chem. Soc. 138, 15717–15726 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Cotret, L. P. et al. Direct visualization of polaron formation in the thermoelectric snse. Proc. Natl Acad. Sci. USA 119, 2113967119 (2022).

    Article  Google Scholar 

  19. Miyata, K. & Zhu, X.-Y. Ferroelectric large polarons. Nat. Mater. 17, 379–381 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Fu, J. et al. Electronic states modulation by coherent optical phonons in 2D halide perovskites. Adv. Mater. 33, 2006233 (2021).

    Article  CAS  Google Scholar 

  21. Zacharias, M. & Giustino, F. One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization. Phys. Rev. B 94, 075125 (2016).

    Article  Google Scholar 

  22. Zacharias, M. & Giustino, F. Theory of the special displacement method for electronic structure calculations at finite temperature. Phys. Rev. Res. 2, 013357 (2020).

    Article  CAS  Google Scholar 

  23. Smith, M. D., Jaffe, A., Dohner, E. R., Lindenberg, A. M. & Karunadasa, H. I. Structural origins of broadband emission from layered Pb–Br hybrid perovskites. Chem. Sci. 8, 4497–4504 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Filip, M. R., Eperon, G. E., Snaith, H. J. & Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 5, 1–9 (2014).

    Article  Google Scholar 

  25. Ni, L. et al. Real-time observation of exciton–phonon coupling dynamics in self-assembled hybrid perovskite quantum wells. ACS Nano 11, 10834–10843 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Wright, A. D. et al. Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 11755 (2016).

    Article  Google Scholar 

  27. Yang, Y. et al. Observation of a hot-phonon bottleneck in lead–iodide perovskites. Nat. Photonics 10, 53–59 (2016).

    Article  CAS  Google Scholar 

  28. Manser, J. S. & Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 8, 737–743 (2014).

    Article  CAS  Google Scholar 

  29. Price, M. B. et al. Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites. Nat. Commun. 6, 8420 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Tran, N. L., Elkins, M. H., McMeekin, D. P., Snaith, H. J. & Scholes, G. D. Observation of charge generation via photoinduced stark effect in mixed-cation lead bromide perovskite thin films. J. Phys. Chem. Lett. 11, 10081–10087 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Jumper, C. C. et al. Broad-band pump–probe spectroscopy quantifies ultrafast solvation dynamics of proteins and molecules. J. Phys. Chem. Lett. 7, 4722–4731 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Yan, Y. J. & Mukamel, S. Femtosecond pump–probe spectroscopy of polyatomic molecules in condensed phases. Phys. Rev. A 41, 6485 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Cina, J. A., Kovac, P. A., Jumper, C. C., Dean, J. C. & Scholes, G. D. Ultrafast transient absorption revisited: phase-flips, spectral fingers, and other dynamical features. J. Chem. Phys. 144, 175102 (2016).

    Article  PubMed  Google Scholar 

  34. Kambhampati, P., Son, D. H., Kee, T. W. & Barbara, P. F. Solvent effects on vibrational coherence and ultrafast reaction dynamics in the multicolor pump–probe spectroscopy of intervalence electron transfer. J. Phys. Chem. A 104, 10637–10644 (2000).

    Article  CAS  Google Scholar 

  35. Pollard, W. T. et al. Theory of dynamic absorption spectroscopy of nonstationary states. 4. Application to 12-fs resonant impulsive Raman spectroscopy of bacteriorhodopsin. J. Phys. Chem. 96, 6147–6158 (1992).

    Article  CAS  Google Scholar 

  36. Gambetta, A. et al. Real-time observation of nonlinear coherent phonon dynamics in single-walled carbon nanotubes. Nat. Phys. 2, 515–520 (2006).

    Article  CAS  Google Scholar 

  37. Park, M. et al. Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite. Nat. Commun. 9, 2525 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Hestand, N. J. & Spano, F. C. Expanded theory of H- and J molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 118, 7069–7163 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Huang, T., Lewis, D. K. & Sharifzadeh, S. Assessing the role of intermolecular interactions in a perylene-based nanowire using first-principles many-body perturbation theory. J. Phys. Chem. Lett. 10, 2842–2848 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Miyata, K. & Zhu, X. Y. Ferroelectric large polarons. Nat. Mater. 17, 379–381 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Seiler, H. et al. Two-dimensional electronic spectroscopy reveals liquid-like lineshape dynamics in CsPbI3 perovskite nanocrystals. Nat. Commun. 10, 4962 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Miyata, K., Atallah, T. L. & Zhu, X. Y. Lead halide perovskites: crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3, e1701469 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sagar, D. et al. Size dependent, state-resolved studies of exciton–phonon couplings in strongly confined semiconductor quantum dots. Phys. Rev. B 77, 235321 (2008).

    Article  Google Scholar 

  45. Ghosh, T., Aharon, S., Etgar, L. & Ruhman, S. Free carrier emergence and onset of electron–phonon coupling in methylammonium lead halide perovskite films. J. Am. Chem. Soc. 139, 18262–18270 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Parra, S. et al. Large exciton polaron formation in 2D hybrid perovskites via time-resolved photoluminescence. ACS Nano 16, 21259–21265 (2022).

    Article  Google Scholar 

  47. Yang, J. et al. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nat. Commun. 8, 1–9 (2017).

    Google Scholar 

  48. Nie, Z. et al. Harnessing hot phonon bottleneck in metal halide perovskite nanocrystals via interfacial electron–phonon coupling. Nano Lett. 20, 4610–4617 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Huang, K. & Rhys, A. Theory of light absorption and non-radiative transitions in f-centres. Proc. R. Soc. Lond. Ser. A 204, 406–423 (1950).

    Article  CAS  Google Scholar 

  50. Whalley, L. D. et al. Giant Huang–Rhys factor for electron capture by the iodine intersitial in perovskite solar cells. J. Am. Chem. Soc. 143, 9123–9128 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fu, J. et al. Hot carrier cooling mechanisms in halide perovskites. Nat. Commun. 8, 1300 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Seiler, H. et al. Direct observation of ultrafast lattice distortions during exciton–polaron formation in lead halide perovskite nanocrystals. ACS Nano 17, 1979–1988 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Buizza, L. R. & Herz, L. M. Polarons and charge localization in metal-halide semiconductors for photovoltaic and light-emitting devices. Adv. Mater. 33, 2007057 (2021).

    Article  CAS  Google Scholar 

  55. Guzelturk, B. et al. Visualization of dynamic polaronic strain fields in hybrid lead halide perovskites. Nat. Mater. 20, 618–623 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Cannelli, O. et al. Quantifying photoinduced polaronic distortions in inorganic lead halide perovskite nanocrystals. J. Am. Chem. Soc. 143, 9048–9059 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, H. et al. Electron–phonon physics from first principles using the EPW code. NPJ Comput. Mater. 156, 1–26 (2023).

    Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, of the US Department of Energy through grant no. DE-SC0015429. Additionally, this work was supported by the US Department of Energy, Office of Basic Energy Sciences under contract DE-SC0020437. D.F.C. acknowledges support from the National Science Foundation under grant CHE-1955407. F.A. acknowledges support from the Department of Energy, Office of Basic Energy Sciences under contract DE-SC0018080. S.S. acknowledges support from the Department of Energy, Office of Basic Energy Sciences under contract DE-SC0023402. R.Z. and D.S.S. acknowledge support from the NSERC of Canada and the E.W.R. Steacie Memorial Fellowship. M.Z. acknowledges funding by the European Union (project ULTRA-2DPK/HORIZON-MSCA-2022-PF-01/grant agreement no. 101106654).

Author information

Authors and Affiliations

Authors

Contributions

S.B., G.D.S., D.S.S. and R.Z initiated the project. S.B. designed and conceptualized the study, performed ultrafast experiments and validated and analysed the experimental data. S.B. wrote the original draft and led the revision and editing. F.A., M.Z., S.S. and D.F.C. designed the computational study, F.A. ran calculations and S.B., F.A., M.Z., S.S. and D.F.C. analysed the theoretical results. R.Z. and D.S.S. designed and fabricated the materials. S.B., G.D.S. and D.F.C. extensively discussed the data. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Dwight S. Seferos or Gregory D. Scholes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Aaron Lindenberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–9 and Figs. 1–16.

Supplementary Data 1

Source data for Supplementary Figs. 1–8 and 14.

Supplementary Data

Source data and files for Supplementary Figs. 9–13 and 16.

Source data

Source Data Figs. 1–4

Includes source data for all figures in the main text. Tabs are included.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Zhao, R., Alowa, F. et al. Exciton polaron formation and hot-carrier relaxation in rigid Dion–Jacobson-type two-dimensional perovskites. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01895-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01895-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing