Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacteriocin diversity, function, discovery and application as antimicrobials

Abstract

Bacteriocins are potent antimicrobial peptides that are produced by bacteria. Since their discovery almost a century ago, diverse peptides have been discovered and described, and some are currently used as commercial food preservatives. Many bacteriocins exhibit extensively post-translationally modified structures encoded on complex gene clusters, whereas others have simple linear structures. The molecular structures, mechanisms of action and resistance have been determined for a number of bacteriocins, but most remain incompletely characterized. These gene-encoded peptides are amenable to bioengineering strategies and heterologous expression, enabling metagenomic mining and modification of novel antimicrobials. The ongoing global antimicrobial resistance crisis demands that novel therapeutics be developed to combat infectious pathogens. New compounds that are target-specific and compatible with the resident microbiota would be valuable alternatives to current antimicrobials. As bacteriocins can be broad or narrow spectrum in nature, they are promising tools for this purpose. However, few bacteriocins have gone beyond preclinical trials and none is currently used therapeutically in humans. In this Review, we explore the broad diversity in bacteriocin structure and function, describe identification and optimization methods and discuss the reasons behind the lack of translation beyond the laboratory of these potentially valuable antimicrobials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The structural diversity of bacteriocins.
Fig. 2: Bacteriocins mechanisms of action and resistance mechanisms.
Fig. 3: Methods of in silico bacteriocin identification and translation to in vitro production, optimization and bioengineering.

Similar content being viewed by others

References

  1. Koehbach, J. & Craik, D. J. The vast structural diversity of antimicrobial peptides. Trends Pharmacol. Sci. 40, 517–528 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Rogers, L. A. The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. J. Bacteriol. 16, 321 (1928).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johnson, E. M. et al. Bacteriocins as food preservatives: challenges and emerging horizons. Crit. Rev. Food Sci. 58, 2743–2767 (2018).

    Article  CAS  Google Scholar 

  4. Gross, E. & Morell, J. L. Structure of nisin. J. Am. Chem. Soc. 93, 4634–4635 (1971).

    Article  CAS  PubMed  Google Scholar 

  5. European Food Safety Authority Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to the use of nisin (E234) as a food additive. EFSA J. 4, 314 (2006).

    Article  Google Scholar 

  6. Vieco-Saiz, N. et al. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 10, 57 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nazari, M., Yaghoubian, I. & Smith, D. L. The stimulatory effect of Thuricin 17, a PGPR-produced bacteriocin, on canola (Brassica napus L.) germination and vegetative growth under stressful temperatures. Front. Plant Sci. 13, 1079180 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cruz, M. R. et al. Structural and functional analysis of EntV reveals a 12 amino acid fragment protective against fungal infections. Nat. Commun. 13, 6047 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martínez-García, M. et al. Autophagic-related cell death of Trypanosoma brucei induced by bacteriocin AS-48. Int. J. Parasitol. Drug 8, 203–212 (2018).

    Article  Google Scholar 

  10. Quintana, V. M. et al. Antiherpes simplex virus type 2 activity of the antimicrobial peptide subtilosin. J. Appl. Microbiol. 117, 1253–1259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meade, E., Slattery, M. A. & Garvey, M. Bacteriocins, potent antimicrobial peptides and the fight against multidrug resistant species: resistance is futile? Antibiotics 9, 32 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. World Health Organization. IACG, Interagency Coordination Group on Antimicrobial Resistance. Report to the Secretary General of the United Nations. No Time to Wait: Securing the Future from Drug-Resistant Infections. https://www.who.int/publications/i/item/no-time-to-wait-securing-the-future-from-drug-resistant-infections (2019).

  13. World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis. Technical document. https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12 (2017).

  14. Geldart, K. G. et al. Engineered E. coli Nissle 1917 for the reduction of vancomycin‐resistant Enterococcus in the intestinal tract. Bioeng. Transl. Med. 3, 197–208 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Telhig, S. et al. Evaluating the potential and synergetic effects of microcins against multidrug-resistant Enterobacteriaceae. Microbiol. Spectr. 10, e02752–21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019). This study provides a detailed discovery and characterization of a novel bacteriocin class that inhibits Gram-negative pathogens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meng, F. et al. Plantaricin A reverses resistance to ciprofloxacin of multidrug‐resistant Staphylococcus aureus by inhibiting efflux pumps. Environ. Microbiol. 24, 4818–4833 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Soltani, S. et al. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol. Rev. 45, fuaa039 (2021).

    Article  PubMed  Google Scholar 

  19. Field, D. et al. Bio-engineered nisin with increased anti-Staphylococcus and selectively reduced anti-Lactococcus activity for treatment of bovine mastitis. Int. J. Mol. Sci. 22, 3480 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heilbronner, S., Krismer, B., Brötz-Oesterhelt, H. & Peschel, A. The microbiome-shaping roles of bacteriocins. Nat. Rev. Microbiol. 19, 726–739 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Cryan, J. F. et al. The microbiota–gut–brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Becattini, S., Taur, Y. & Pamer, E. G. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol. Med. 22, 458–478 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Montalbán-López, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 38, 130–239 (2021). This article provides an intricately detailed review of ribosomally produced and post-translationally modified peptide groups, biosynthesis and biochemistry, of which many are bacteriocins.

    Article  PubMed  Google Scholar 

  24. Trimble, M. J., Mlynárčik, P., Kolář, M. & Hancock, R. E. W. Polymyxin: alternative mechanisms of action and resistance. CSH Perspect. Med. 6, a025288 (2016).

    Google Scholar 

  25. Van Heel, A. J., Montalban-Lopez, M., Oliveau, Q. & Kuipers, O. P. Genome-guided identification of novel head-to-tail cyclized antimicrobial peptides, exemplified by the discovery of pumilarin. Microb. Genom. 3, e000134 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Metelev, M. et al. Klebsazolicin inhibits 70S ribosome by obstructing the peptide exit tunnel. Nat. Chem. Biol. 13, 1129–1136 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pashou, E. et al. Identification and characterization of corynaridin, a novel linaridin from Corynebacterium lactis. Microbiol. Spectr. 11, e01756-22 (2023).

    Article  PubMed  Google Scholar 

  28. Deisinger, J. P. et al. Dual targeting of the class V lanthipeptide antibiotic cacaoidin. iScience 26, 106394 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ekblad, B. et al. Structure–function analysis of the two-peptide bacteriocin plantaricin EF. Biochemistry 55, 5106–5116 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Nowakowski, M. et al. Spatial attributes of the four-helix bundle group of bacteriocins — the high-resolution structure of BacSp222 in solution. Int. J. Biol. Macromol. 107, 2715–2724 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Hammi, I. et al. Maltaricin CPN, a new class IIa bacteriocin produced by Carnobacterium maltaromaticum CPN isolated from mould-ripened cheese. J. Appl. Microbiol. 121, 1268–1274 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Sugrue, I., O’Connor, P. M., Hill, C., Stanton, C. & Ross, R. P. Actinomyces produces defensin-like bacteriocins (actifensins) with a highly degenerate structure and broad antimicrobial activity. J. Bacteriol. 202, e00529–e00619 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perez, R. H., Zendo, T. & Sonomoto, K. Circular and leaderless bacteriocins: biosynthesis, mode of action, applications, and prospects. Front. Microbiol. 9, 2085 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mortzfeld, B. M. et al. Microcin MccI47 selectively inhibits enteric bacteria and reduces carbapenem-resistant Klebsiella pneumoniae colonization in vivo when administered via an engineered live biotherapeutic. Gut Microb. 14, 2127633 (2022).

    Article  Google Scholar 

  35. Sawa, N. et al. Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Appl. Environ. Microbiol. 75, 1552–1558 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Scholz, R. et al. Amylocyclicin, a novel circular bacteriocin produced by bacillus amyloliquefaciens FZB42. J. Bacteriol. 196, 1842–1852 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu, F., Van Heel, A. J. & Kuipers, O. P. Leader- and terminal residue requirements for circularin A biosynthesis probed by systematic mutational analyses. ACS Synth. Biol. 12, 852–862 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lagedroste, M., Reiners, J., Smits, S. H. J. & Schmitt, L. Impact of the nisin modification machinery on the transport kinetics of NisT. Sci. Rep. 10, 12295 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lagedroste, M., Smits, S. H. J. & Schmitt, L. Substrate specificity of the secreted nisin leader peptidase NisP. Biochemistry 56, 4005–4014 (2017).

    Article  PubMed  Google Scholar 

  40. Viel, J. H., Jaarsma, A. H. & Kuipers, O. P. Heterologous expression of mersacidin in Escherichia coli elucidates the mode of leader processing. ACS Synth. Biol. 10, 600–608 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Viel, J. H. & Kuipers, O. P. Mutational studies of the mersacidin leader reveal the function of its unique two-step leader processing mechanism. ACS Synth. Biol. 11, 1949–1957 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pérez-Ramos, A., Ladjouzi, R., Benachour, A. & Drider, D. Evidence for the involvement of pleckstrin homology domain-containing proteins in the transport of enterocin DD14 (EntDD14); a leaderless two-peptide bacteriocin. Int. J. Mol. Sci. 22, 12877 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Van Der Donk, W. A. & Nair, S. K. Structure and mechanism of lanthipeptide biosynthetic enzymes. Curr. Opin. Struct. Biol. 29, 58–66 (2014).

    Article  PubMed  Google Scholar 

  44. Khosa, S., Lagedroste, M. & Smits, S. H. J. Protein defense systems against the lantibiotic nisin: function of the immunity protein NisI and the resistance protein NSR. Front. Microbiol. 7, 504 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Spieß, T., Korn, S. M., Kötter, P. & Entian, K.-D. Autoinduction specificities of the lantibiotics subtilin and nisin. Appl. Environ. Microbiol. 81, 7914–7923 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mesa-Pereira, B. et al. Controlled functional expression of the bacteriocins pediocin PA-1 and bactofencin A in Escherichia coli. Sci. Rep. 7, 3069–3069 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chiumento, S. et al. Ruminococcin C, a promising antibiotic produced by a human gut symbiont. Sci. Adv. 5, eaaw9969 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Singh, V. & Rao, A. Distribution and diversity of glycocin biosynthesis gene clusters beyond Firmicutes. Glycobiology 31, 89–102 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Tietz, J. I. et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat. Chem. Biol. 13, 470–478 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kommineni, S. et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526, 719–722 (2015). This detailed paper illustrates not only the efficacy of using related species to inhibit pathogens in vivo but also the risks of bacteriocin gene transfer to host microorganisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dragoš, A. et al. Phages carry interbacterial weapons encoded by biosynthetic gene clusters. Curr. Biol. 31, 3479–3489.e5 (2021). This study is an interesting description of bacteriocin gene clusters present in bacteriophage and demonstration of bacteriocin gene transfer via phage infection.

    Article  PubMed  Google Scholar 

  52. Fu, Y., Jaarsma, A. H. & Kuipers, O. P. Antiviral activities and applications of ribosomally synthesized and post-translationally modified peptides (RiPPs). Cell. Mol. Life Sci. 78, 3921–3940 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Torres, N. I. et al. Safety, formulation, and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1. Probiot. Antimicrob. Prot. 5, 26–35 (2013).

    Article  CAS  Google Scholar 

  54. Baindara, P., Gautam, A., Raghava, G. P. S. & Korpole, S. Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10. Sci. Rep. 7, 46541 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Varas, M. A. et al. Exploiting zebrafish xenografts for testing the in vivo antitumorigenic activity of microcin E492 against human colorectal cancer cells. Front. Microbiol. 11, 405 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang, S. et al. Enhancement of macrophage function by the antimicrobial peptide sublancin protects mice from methicillin-resistant Staphylococcus aureus. J. Immunol. Res. 2019, 1–13 (2019).

    CAS  Google Scholar 

  57. Li, J., Chen, J., Yang, G. & Tao, L. Sublancin protects against methicillin-resistant Staphylococcus aureus infection by the combined modulation of innate immune response and microbiota. Peptides 141, 170533 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Shanker, E. & Federle, M. Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes 8, 15 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tan, S., Ludwig, K. C., Müller, A., Schneider, T. & Nodwell, J. R. The lasso peptide siamycin-I targets lipid II at the Gram-positive cell surface. ACS Chem. Biol. 14, 966–974 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Zhu, L., Zeng, J., Wang, C. & Wang, J. Structural basis of pore formation in the mannose phosphotransferase system by pediocin PA-1. Appl. Environ. Microbiol. 88, e01992–21 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hammond, K. et al. Flowering poration — a synergistic multi-mode antibacterial mechanism by a bacteriocin fold. iScience 23, 101423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ongpipattanakul, C. et al. Mechanism of action of ribosomally synthesized and post-translationally modified peptides. Chem. Rev. 122, 14722–14814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pérez-Ramos, A., Madi-Moussa, D., Coucheney, F. & Drider, D. Current knowledge of the mode of action and immunity mechanisms of LAB-bacteriocins. Microorganisms 9, 2107 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Antoshina, D. V., Balandin, S. V. & Ovchinnikova, T. V. Structural features, mechanisms of action, and prospects for practical application of class II bacteriocins. Biochemistry 87, 1387–1403 (2022).

    CAS  PubMed  Google Scholar 

  65. Field, D., Fernandez de Ullivarri, M., Ross, R. P. & Hill, C. After a century of nisin research — where are we now? FEMS Microbiol. Rev. 47, fuad023 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Scherer, K. M., Spille, J.-H., Sahl, H.-G., Grein, F. & Kubitscheck, U. The lantibiotic nisin induces lipid II aggregation, causing membrane instability and vesicle budding. Biophys. J. 108, 1114–1124 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dickman, R. et al. A chemical biology approach to understanding molecular recognition of lipid II by nisin(1–12): synthesis and NMR ensemble analysis of nisin(1–12) and analogues. Chem. Eur. J. 25, 14572–14582 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Guo, L. et al. Rombocin, a short stable natural nisin variant, displays selective antimicrobial activity against Listeria monocytogenes and employs a dual mode of action to kill target bacterial strains. ACS Synth. Biol. 13, 370–383 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Guo, L. et al. Cesin, a short natural variant of nisin, displays potent antimicrobial activity against major pathogens despite lacking two C-terminal macrocycles. Microbiol. Spectr. 11, e05319–e05322 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Heeney, D. D., Yarov‐Yarovoy, V. & Marco, M. L. Sensitivity to the two peptide bacteriocin plantaricin EF is dependent on CorC, a membrane‐bound, magnesium/cobalt efflux protein. MicrobiologyOpen 8, e827 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kjos, M. et al. Sensitivity to the two‐peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell‐wall synthesis. Mol. Microbiol. 92, 1177–1187 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Zhu, L., Zeng, J. & Wang, J. Structural basis of the immunity mechanisms of pediocin-like bacteriocins. Appl. Environ. Microbiol. 88, e00481-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tymoszewska, A., Diep, D. B. & Aleksandrzak-Piekarczyk, T. The extracellular loop of Man-PTS subunit IID is responsible for the sensitivity of Lactococcus garvieae to garvicins A, B and C. Sci. Rep. 8, 15790 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Li, R., Duan, J., Zhou, Y. & Wang, J. Structural basis of the mechanisms of action and immunity of lactococcin A, a class IId bacteriocin. Appl. Environ. Microbiol. 89, e00066-23 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Huang, K., Zeng, J., Liu, X., Jiang, T. & Wang, J. Structure of the mannose phosphotransferase system (Man-PTS) complexed with microcin E492, a pore-forming bacteriocin. Cell Discov. 7, 20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gabrielsen, C., Brede, D. A., Hernández, P. E., Nes, I. F. & Diep, D. B. The maltose ABC transporter in Lactococcus lactis facilitates high-level sensitivity to the circular bacteriocin garvicin ML. Antimicrob. Agents Chemother. 56, 2908–2915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cebrián, R. et al. The bacteriocin AS-48 requires dimer dissociation followed by hydrophobic interactions with the membrane for antibacterial activity. J. Struct. Biol. 190, 162–172 (2015).

    Article  PubMed  Google Scholar 

  78. Li, Q. et al. Outer-membrane-acting peptides and lipid II-targeting antibiotics cooperatively kill Gram-negative pathogens. Commun. Biol. 4, 31 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Helander, I. M. & Mattila-Sandholm, T. Permeability barrier of the Gram-negative bacterial outer membrane with special reference to nisin. Int. J. Food Microbiol. 60, 153–161 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Belguesmia, Y., Bendjeddou, K., Kempf, I., Boukherroub, R. & Drider, D. Heterologous biosynthesis of five new class II bacteriocins from Lactobacillus paracasei CNCM I-5369 with antagonistic activity against pathogenic Escherichia coli strains. Front. Microbiol. 11, 1198 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Li, Q., Montalban-Lopez, M. & Kuipers, O. P. Increasing the antimicrobial activity of nisin-based lantibiotics against Gram-negative pathogens. Appl. Environ. Microbiol. 84, e00052–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Acuña, L., Picariello, G., Sesma, F., Morero, R. D. & Bellomio, A. A new hybrid bacteriocin, Ent35–MccV, displays antimicrobial activity against pathogenic Gram‐positive and Gram‐negative bacteria. FEBS Open. Biol. 2, 12–19 (2012).

    Article  Google Scholar 

  83. Braffman, N. R. et al. Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin. Proc. Natl Acad. Sci. USA 116, 1273–1278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Coyne, M. J. et al. A family of anti-Bacteroidales peptide toxins wide-spread in the human gut microbiota. Nat. Commun. 10, 3460 (2019). Description of a novel family of bacteriocins widespread in Bacteroidetes that are related to Gram-positive bacteriocins.

    Article  PubMed  PubMed Central  Google Scholar 

  85. García-Bayona, L., Gozzi, K. & Laub, M. T. Mechanisms of resistance to the contact-dependent bacteriocin CdzC/D in Caulobacter crescentus. J. Bacteriol. 201, e00538–e00618 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Geldart, K. & Kaznessis, Y. N. Characterization of class IIa bacteriocin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 61, e02033-16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sun, Z. et al. Novel mechanism for nisin resistance via proteolytic degradation of nisin by the nisin resistance protein NSR. Antimicrob. Agents Chemother. 53, 1964–1973 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gottstein, J. et al. New insights into the resistance mechanism for the BceAB-type transporter SaNsrFP. Sci. Rep. 12, 4232 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ongey, E. L. & Neubauer, P. Lanthipeptides: chemical synthesis versus in vivo biosynthesis as tools for pharmaceutical production. Microb. Cell Fact. 15, 97 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Telke, A. A. et al. Over 2000-fold increased production of the leaderless bacteriocin garvicin KS by increasing gene dose and optimization of culture conditions. Front. Microbiol. 10, 389 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cui, Y. et al. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: a review. Comp. Rev. Food Sci. Food Safe. 20, 863–899 (2021).

    Article  CAS  Google Scholar 

  92. Mesa-Pereira, B., Rea, M. C., Cotter, P. D., Hill, C. & Ross, R. P. Heterologous expression of biopreservative bacteriocins with a view to low cost production. Front. Microbiol. 9, 1654 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Collins, F. W. J. et al. Reincarnation of bacteriocins from the lactobacillus pangenomic graveyard. Front. Microbiol. 9, 1298 (2018). This publication describes mining of peptides from functionally ‘dead’ biosynthetic gene clusters and expressing them using characterized machinery.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Himes, P. M., Allen, S. E., Hwang, S. & Bowers, A. A. Production of sactipeptides in Escherichia coli: probing the substrate promiscuity of subtilosin A biosynthesis. ACS Chem. Biol. 11, 1737–1744 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, F., Van Heel, A. J., Chen, J. & Kuipers, O. P. Functional production of clostridial circularin A in Lactococcus lactis NZ9000 and mutational analysis of its aromatic and cationic residues. Front. Microbiol. 13, 1026290 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yu, W. et al. Expression and purification of recombinant Lactobacillus casei bacteriocin and analysis of its antibacterial activity. CyTA J. Food 18, 301–308 (2020).

    Article  CAS  Google Scholar 

  97. Xu, Y., Yang, L., Li, P. & Gu, Q. Heterologous expression of class IIb bacteriocin plantaricin JK in Lactococcus lactis. Protein Expr. Purif. 159, 10–16 (2019).

    Article  PubMed  Google Scholar 

  98. Perez, R. H. et al. Functional analysis of genes involved in the biosynthesis of enterocin NKR-5-3B, a novel circular bacteriocin. J. Bacteriol. 198, 291–300 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Arbulu, S. et al. Cloning and expression of synthetic genes encoding native, hybrid- and bacteriocin-derived chimeras from mature class IIa bacteriocins, by Pichia pastoris (syn. Komagataella spp.). Food Res. Int. 121, 888–899 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Jiménez, J. J. et al. Use of synthetic genes for cloning, production and functional expression of the bacteriocins enterocin A and bacteriocin E 50-52 by Pichia pastoris and Kluyveromyces lactis. Mol. Biotechnol. 56, 571–583 (2014).

    Article  PubMed  Google Scholar 

  101. Gaona-Mendoza, A. S., Barboza-Corona, J. E. & Casados-Vázquez, L. E. Improving the yields of thurincin H in a native producer strain. Anton. Leeuw. 113, 1061–1066 (2020).

    Article  CAS  Google Scholar 

  102. Meng, F. et al. Expression of a novel bacteriocin — the plantaricin Pln1-in Escherichia coli and its functional analysis. Protein Expr. Purif. 119, 85–93 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Mierau, I. & Kleerebezem, M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl. Microbiol. Biotechnol. 68, 705–717 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Field, D. et al. A bioengineered nisin derivative to control biofilms of Staphylococcus pseudintermedius. PLoS ONE 10, e0119684 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Twomey, E., Hill, C., Field, D. & Begley, M. Bioengineered nisin derivative M17Q has enhanced activity against Staphylococcus epidermidis. Antibiotics 9, 305 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kers, J. A. et al. Blueprints for the rational design of therapeutic mutacin 1140 variants. Chem. Biol. Drug Des. 92, 1940–1953 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Kers, J. A. et al. Mutacin 1140 lantibiotic variants are efficacious against Clostridium difficile infection. Front. Microbiol. 9, 415 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kuniyoshi, T. M. et al. An oxidation resistant pediocin PA-1 derivative and penocin A display effective anti-Listeria activity in a model human gut environment. Gut Microb. 14, 2004071 (2022).

    Article  Google Scholar 

  109. Field, D. et al. Bioengineering nisin to overcome the nisin resistance protein. Mol. Microbiol. 111, 717–731 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Deng, J., Viel, J. H., Chen, J. & Kuipers, O. P. Synthesis and characterization of heterodimers and fluorescent nisin species by incorporation of methionine analogues and subsequent click chemistry. ACS Synth. Biol. 9, 2525–2536 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Guo, L., Wang, C., Broos, J. & Kuipers, O. P. Lipidated variants of the antimicrobial peptide nisin produced via incorporation of methionine analogs for click chemistry show improved bioactivity. J. Biol. Chem. 299, 104845 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wiman, E. et al. Development of novel broad-spectrum antimicrobial lipopeptides derived from plantaricin NC8 β. Sci. Rep. 13, 4104 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rea, M. C. et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl Acad. Sci. USA 107, 9352–9357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. van Heel, A. J. et al. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 46, W278–W281 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Blin, K. et al. AntiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xin, B. et al. The Bacillus cereus group is an excellent reservoir of novel lanthipeptides. Appl. Environ. Microbiol. 81, 1765–1774 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sun, Z. et al. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat. Commun. 6, 8322 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Costa, S. S., Da Silva Moia, G., Silva, A., Baraúna, R. A. & De Oliveira Veras, A. A. BADASS: bacteriocin-diversity assessment software. BMC Bioinf. 24, 24 (2023).

    Article  CAS  Google Scholar 

  119. Ren, H., Biswas, S., Ho, S., Van Der Donk, W. A. & Zhao, H. Rapid discovery of glycocins through pathway refactoring in Escherichia coli. ACS Chem. Biol. 13, 2966–2972 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Biswas, S., Garcia De Gonzalo, C. V., Repka, L. M. & Van Der Donk, W. A. Structure–activity relationships of the S-linked glycocin sublancin. ACS Chem. Biol. 12, 2965–2969 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kaunietis, A., Buivydas, A., Čitavičius, D. J. & Kuipers, O. P. Heterologous biosynthesis and characterization of a glycocin from a thermophilic bacterium. Nat. Commun. 10, 1115 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ayikpoe, R. S. et al. A scalable platform to discover antimicrobials of ribosomal origin. Nat. Commun. 13, 6135 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hadjithomas, M. et al. IMG-ABC: a knowledge base to fuel discovery of biosynthetic gene clusters and novel secondary metabolites. mBio 6, e00932-15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zdouc, M. M., Van Der Hooft, J. J. J. & Medema, M. H. Metabolome-guided genome mining of RiPP natural products. Trends Pharmacol. Sci. 44, 532–541 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Mohimani, H. et al. Automated genome mining of ribosomal peptide natural products. ACS Chem. Biol. 9, 1545–1551 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cao, L. et al. MetaMiner: a scalable peptidogenomics approach for discovery of ribosomal peptide natural products with blind modifications from microbial communities. Cell Syst. 9, 600–608.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. van Gijtenbeek, L. A. et al. Gene-trait matching and prevalence of nisin tolerance systems in Lactococus lactis. Front. Bioeng. Biotechnol. 9, 622835 (2021). This systematic study teases apart the relationship between nisin genes and production and tolerance phenotypes of lactococci in dairy fermentation.

    Article  PubMed  PubMed Central  Google Scholar 

  128. GovInfo. US Food and Drug Administration (FDA). ‘Nisin preparation’. Code of Federal Regulations, Title 21. https://www.govinfo.gov/app/details/CFR-2011-title21-vol3/CFR-2011-title21-vol3-sec184-1538 (2011).

  129. European Food Safety Authority (EFSA). Introduction of a qualified presumption of safety (QPS) approach for assessment of selected microorganisms referred to EFSA — Opinion of the Scientific Committee. EFSA J. 587, 1–16 (2007).

    Google Scholar 

  130. US Food and Drug Administration. GRAS Notice No. 305 Carnobacterium maltaromaticum Strain CB1 (Viable and Heat-treated). https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=305 (2010).

  131. Glassner, K. L., Abraham, B. P. & Quigley, E. M. M. The microbiome and inflammatory bowel disease. J. Allergy Clin. Immunol. 145, 16–27 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Cryan, J. F., O’Riordan, K. J., Sandhu, K., Peterson, V. & Dinan, T. G. The gut microbiome in neurological disorders. Lancet Neurol. 19, 179–194 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Dabke, K., Hendrick, G. & Devkota, S. The gut microbiome and metabolic syndrome. J. Clin. Invest. 129, 4050–4057 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Yip, A. Y. G. et al. Antibiotics promote intestinal growth of carbapenem-resistant Enterobacteriaceae by enriching nutrients and depleting microbial metabolites. Nat. Commun. 14, 5094 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Maier, L. et al. Unravelling the collateral damage of antibiotics on gut bacteria. Nature 599, 120–124 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dessinioti, C. & Katsambas, A. Propionibacterium acnes and antimicrobial resistance in acne. Clin. Dermatol. 35, 163–167 (2017).

    Article  PubMed  Google Scholar 

  137. Jo, J.-H. et al. Alterations of human skin microbiome and expansion of antimicrobial resistance after systemic antibiotics. Sci. Transl. Med. 13, eabd8077 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dunlop, A. L. et al. Stability of the vaginal, oral, and gut microbiota across pregnancy among African American women: the effect of socioeconomic status and antibiotic exposure. PeerJ 7, e8004 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Umu, Ö. C. O. et al. The potential of class II bacteriocins to modify gut microbiota to improve host health. PLoS ONE 11, e0164036 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Rea, M. C. et al. Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc. Natl Acad. Sci. USA 108, 4639–4644 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Naimi, S. et al. Impact of microcin J25 on the porcine microbiome in a continuous culture model. Front. Microbiol. 13, 930392 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ríos Colombo, N. S. et al. Impact of bacteriocin-producing strains on bacterial community composition in a simplified human intestinal microbiota. Front. Microbiol. 14, 1290697 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Weiss, A. S. et al. Nutritional and host environments determine community ecology and keystone species in a synthetic gut bacterial community. Nat. Commun. 14, 4780 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gough, R. et al. Simulated gastrointestinal digestion of nisin and interaction between nisin and bile. LWT 86, 530–537 (2017).

    Article  CAS  Google Scholar 

  145. Rea, M. C. et al. Bioavailability of the anti-clostridial bacteriocin thuricin CD in gastrointestinal tract. Microbiology 160, 439–445 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Soltani, S. et al. Gastrointestinal stability and cytotoxicity of bacteriocins from Gram-positive and Gram-negative bacteria: a comparative in vitro study. Front. Microbiol. 12, 780355 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Kitching, M. et al. A live bio-therapeutic for mastitis, containing Lactococcus lactis DPC3147 with comparable efficacy to antibiotic treatment. Front. Microbiol. 10, 2220 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Flynn, J., Ryan, A. & Hudson, S. P. Pre-formulation and delivery strategies for the development of bacteriocins as next generation antibiotics. Eur. J. Pharm. Biopharm. 165, 149–163 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Durack, E. et al. Protecting bactofencin A to enable its antimicrobial activity using mesoporous matrices. Int. J. Pharm. 558, 9–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Flynn, J., Mallen, S., Durack, E., O’Connor, P. M. & Hudson, S. P. Mesoporous matrices for the delivery of the broad spectrum bacteriocin, nisin A. J. Colloid Interface Sci. 537, 396–406 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Flynn, J., Durack, E., Collins, M. N. & Hudson, S. P. Tuning the strength and swelling of an injectable polysaccharide hydrogel and the subsequent release of a broad spectrum bacteriocin, nisin A. J. Mater. Chem. B 8, 4029–4038 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Sundara Rajan, S. et al. Polyethylene glycol-based hydrogels for controlled release of the antimicrobial subtilosin for prophylaxis of bacterial vaginosis. Antimicrob. Agents Chemother. 58, 2747–2753 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Sulthana, R. & Archer, A. C. Bacteriocin nanoconjugates: boon to medical and food industry. J. Appl. Microbiol. 131, 1056–1071 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Belguesmia, Y., Hazime, N., Kempf, I., Boukherroub, R. & Drider, D. New bacteriocins from Lacticaseibacillus paracasei CNCM I-5369 adsorbed on alginate nanoparticles are very active against Escherichia coli. Int. J. Mol. Sci. 21, 8654 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Haitao, Y., Yifan, C., Mingchao, S. & Shuaijuan, H. A novel polymeric nanohybrid antimicrobial engineered by antimicrobial peptide MccJ25 and chitosan nanoparticles exerts strong antibacterial and anti-inflammatory activities. Front. Immunol. 12, 811381 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. World Health Organisation. 2020 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis. https://www.who.int/publications/i/item/9789240021303 (2021).

  157. Pulse, M. E. et al. Pharmacological, toxicological, and dose range assessment of OG716, a novel lantibiotic for the treatment of Clostridium difficile-associated infection. Antimicrob. Agents Chemother. 63, e01904–e01918 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Murphy, C. K. et al. Novel, non-colonizing, single-strain live biotherapeutic product ADS024 protects against Clostridioides difficile infection challenge in vivo. World J. Gastrointest. Pathophysiol. 14, 71–85 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Bhansali, S. G. et al. Pharmacokinetics of LFF571 and vancomycin in patients with moderate Clostridium difficile infections. Antimicrob. Agents Chemother. 59, 1441–1445 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Mullane, K. et al. Multicenter, randomized clinical trial to compare the safety and efficacy of LFF571 and vancomycin for Clostridium difficile infections. Antimicrob. Agents Chemother. 59, 1435–1440 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lepak, A. J., Marchillo, K., Craig, W. A. & Andes, D. R. In vivo pharmacokinetics and pharmacodynamics of the lantibiotic NAI-107 in a neutropenic murine thigh infection model. Antimicrob. Agents Chemother. 59, 1258–1264 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Nakatsuji, T. et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat. Med. 27, 700–709 (2021). A phase I clinical trial demonstrates the effect of a bacteriocin producer as a treatment for human illness.

    Article  CAS  PubMed  Google Scholar 

  163. Ju, M. et al. Evaluation of analogs of mutacin 1140 in systemic and cutaneous methicillin-resistant Staphylococcus aureus infection models in mice. Front. Microbiol. 13, 1067410 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Cárdenas, N. et al. Prevention of recurrent acute otitis media in children through the use of Lactobacillus salivarius PS7, a target-specific probiotic strain. Nutrients 11, 376 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Studdert, V. & Hughes, K. A clinical trial of a topical preparation of miconazole, polymyxin and prednisolone in the treatment of otitis externa in dogs. Aust. Vet. J. 68, 193–195 (1991).

    Article  CAS  PubMed  Google Scholar 

  166. Bailly, C. The bacterial thiopeptide thiostrepton. An update of its mode of action, pharmacological properties and applications. Eur. J. Pharmacol. 914, 174661 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Norouzi, Z., Salimi, A., Halabian, R. & Fahimi, H. Nisin, a potent bacteriocin and anti-bacterial peptide, attenuates expression of metastatic genes in colorectal cancer cell lines. Microb. Pathog. 123, 183–189 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Al-Madboly, L. A. et al. Purification, characterization, identification, and anticancer activity of a circular bacteriocin from Enterococcus thailandicus. Front. Bioeng. Biotechnol. 8, 450 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Grasemann, H. et al. Inhalation of Moli1901 in patients with cystic fibrosis. Chest 131, 1461–1466 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Oliynyk, I., Varelogianni, G., Roomans, G. M. & Johannesson, M. Effect of duramycin on chloride transport and intracellular calcium concentration in cystic fibrosis and non-cystic fibrosis epithelia. APMIS 118, 982–990 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Shafee, T. M. & Lay, F. T. Convergent evolution of defensin sequence, structure and function. Cell. Mol. Life Sci. 74, 663–682 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Iorio, M. et al. A glycosylated, labionin-containing lanthipeptide with marked antinociceptive activity. ACS Chem. Biol. 9, 398–404 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Gouda, H. et al. Three-dimensional solution structure of bottromycin A2: a potent antibiotic active against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. Chem. Pharm. Bull. 60, 169–171 (2012).

    Article  CAS  Google Scholar 

  174. Ishida, K., Matsuda, H., Murakami, M. & Yamaguchi, K. Kawaguchipeptin B, an antibacterial cyclic undecapeptide from the cyanobacterium Microcystis aeruginosa. J. Nat. Prod. 60, 724–726 (1997).

    Article  CAS  PubMed  Google Scholar 

  175. Kalamara, M., Abbott, J., Sukhodub, T., MacPhee, C. & Stanley-Wall, N. R. The putative role of the epipeptide EpeX in Bacillus subtilis intra-species competition. Microbiology 169, 001344 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zendo, T. et al. Kunkecin A, a new nisin variant bacteriocin produced by the fructophilic lactic acid bacterium, Apilactobacillus kunkeei FF30-6 isolated from honey bees. Front. Microbiol. 11, 571903 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Singh, M., Chaudhary, S. & Sareen, D. Roseocin, a novel two-component lantibiotic from an actinomycete. Mol. Microbiol. 113, 326–337 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Ortiz‐López, F. J. et al. Cacaoidin, first member of the new lanthidin RiPP family. Angew. Chem. Int. Ed. Engl. 59, 12654–12658 (2020).

    Article  PubMed  Google Scholar 

  179. Cheung‐Lee, W. L. et al. Discovery of ubonodin, an antimicrobial lasso peptide active against members of the Burkholderia cepacia complex. ChemBioChem 21, 1335–1340 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Suzuki, M. et al. Isolation and structure determination of new linear azole-containing peptides spongiicolazolicins A and B from Streptomyces sp. CWH03. Appl. Microbiol. Biotechnol. 105, 93–104 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Jin, M., Liu, L., Wright, S. A. I., Beer, S. V. & Clardy, J. Structural and functional analysis of pantocin A: an antibiotic from Pantoea agglomerans discovered by heterologous expression of cloned genes. Angew. Chem. Int. Ed. Engl. 42, 2898–2901 (2003).

    Article  CAS  PubMed  Google Scholar 

  182. Hudson, G. A., Zhang, Z., Tietz, J. I., Mitchell, D. A. & Van Der Donk, W. A. In vitro biosynthesis of the core scaffold of the thiopeptide thiomuracin. J. Am. Chem. Soc. 137, 16012–16015 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Balty, C. et al. Ruminococcin C, an anti-clostridial sactipeptide produced by a prominent member of the human microbiota Ruminococcus gnavus. J. Biol. Chem. 294, 14512–14525 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Palmer, J. D. et al. Microcin H47: a class IIb microcin with potent activity against multidrug resistant Enterobacteriaceae. ACS Infect. Dis. 6, 672–679 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. O’Shea, E. F. et al. Bactofencin A, a new type of cationic bacteriocin with unusual immunity. mBio 4, e00498-13 (2013).

    PubMed  PubMed Central  Google Scholar 

  186. Ladjouzi, R., Lucau-Danila, A., Benachour, A. & Drider, D. A leaderless two-peptide bacteriocin, Enterocin DD14, is involved in its own self-immunity: evidence and insights. Front. Bioeng. Biotechnol. 8, 644 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Boakes, S., Weiss, W. J., Vinson, M., Wadman, S. & Dawson, M. J. Antibacterial activity of the novel semisynthetic lantibiotic NVB333 in vitro and in experimental infection models. J. Antibiot. 69, 850–857 (2016).

    Article  CAS  Google Scholar 

  188. Boakes, S. & Dawson, M. J. Discovery and development of NVB302, a semisynthetic antibiotic for treatment of Clostridium difficile infection. in Natural Products (eds Osbourn, A., Goss, R. J. & Carter, G. T.) 455–468 (Wiley, 2014).

  189. Febbraro, S. Assessment of the safety and distribution of NVB302 in healthy volunteers. ISRCTN https://doi.org/10.1186/ISRCTN40071144 (2016).

  190. Jabés, D. et al. Efficacy of the new lantibiotic NAI-107 in experimental infections induced by multidrug-resistant Gram-positive pathogens. Antimicrob. Agents Chemother. 55, 1671–1676 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Ge, P. et al. Action of a minimal contractile bactericidal nanomachine. Nature 580, 658–662 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hols, P., Ledesma-García, L., Gabant, P. & Mignolet, J. Mobilization of microbiota commensals and their bacteriocins for therapeutics. Trends Microbiol. 27, 690–702 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. Jacob, F., Lwoff, A., Siminovitch, A. & Wollman, E. [Definition of some terms relative to lysogeny]. Ann. Inst. Pasteur 84, 222–224 (1953).

    CAS  Google Scholar 

  194. Gratia, A. Sur un remarquable exemple d’antagonisme entre deux souches de coilbacille. CR Seances Soc. Biol. Fil. 93, 1040–1041 (1925).

    Google Scholar 

  195. Ivanovics, G., Alfoldi, L. & Nagy, E. Mode of action of megacin. J. Gen. Microbiol. 21, 51–60 (1959).

    Article  CAS  PubMed  Google Scholar 

  196. Tagg, J. R., Dajani, A. S. & Wannamaker, L. W. Bacteriocins of Gram-positive bacteria. Bacteriol. Rev. 40, 722–756 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Klaenhammer, T. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12, 39–85 (1993).

    Article  CAS  PubMed  Google Scholar 

  198. Cotter, P. D., Hill, C. & Ross, R. P. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3, 777 (2005).

    Article  CAS  PubMed  Google Scholar 

  199. Ahmad, V. et al. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. Int. J. Antimicrob. Agents 49, 1–11 (2017).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

I.S. researched data for article. C.H., I.S. and R.P.R. substantially contributed to discussion of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Colin Hill.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Djamel Drider, Michael Chikindas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugrue, I., Ross, R.P. & Hill, C. Bacteriocin diversity, function, discovery and application as antimicrobials. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01045-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01045-x

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology