Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Understanding the biology of monkeypox virus to prevent future outbreaks

Abstract

Historically, monkeypox (mpox) was a zoonotic disease endemic in Africa. However, in 2022, a global outbreak occurred following a substantial increase in cases in Africa, coupled with spread by international travellers to other continents. Between January 2022 and October 2023, about 91,000 confirmed cases from 115 countries were reported, leading the World Health Organization to declare a public health emergency. The basic biology of monkeypox virus (MPXV) can be inferred from other poxviruses, such as vaccinia virus, and confirmed by genome sequencing. Here the biology of MPXV is reviewed, together with a discussion of adaptive changes during MPXV evolution and implications for transmission. Studying MPXV biology is important to inform specific host interactions, to aid in ongoing outbreaks and to predict those in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of MPXV detection and mpox cases globally.
Fig. 2: Global map of mpox incidence.
Fig. 3: Replication cycle of Orthopoxvirus.
Fig. 4: Mpox in Africa between 1970 and 2019.

Similar content being viewed by others

References

  1. Satheshkumar, P. S. & Damon, I. in Fields Virology: DNA Viruses Vol. 4 (eds Howley, P. M. et al.) Ch. 17 (Wolters Kluwer, 2021).

  2. von Magnus, P., Andersen, E. K., Petersen, K. B. & Birch-Andersen, A. A pox-like disease in cynomolgus monkeys. Acta Pathol. Microb. Scand. 46, 156–176 (1959).

    Article  Google Scholar 

  3. Bunge, E. M. et al. The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLoS Negl. Trop. Dis. 16, e0010141 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thornhill, J. P. et al. Monkeypox virus infection in humans across 16 countries—April–June 2022. N. Engl. J. Med. 387, 679–691 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Multi-Country Outbreak of mpox External Situation Report #30—25 November 2023 (World Health Organization, 2023); https://www.who.int/publications/m/item/multi-country-outbreak-of-mpox--external-situation-report-30---25-november-2023

  6. Forni, D., Cagliani, R., Molteni, C., Clerici, M. & Sironi, M. Monkeypox virus: the changing facets of a zoonotic pathogen. Infect. Genet. Evol. 105, 105372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lum, F. M. et al. Monkeypox: disease epidemiology, host immunity and clinical interventions. Nat. Rev. Immunol. 22, 597–613 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Falendysz, E. A., Lopera, J. G., Rocke, T. E. & Osorio, J. E. Monkeypox virus in animals: current knowledge of viral transmission and pathogenesis in wild animal reservoirs and captive animal models. Viruses 15, 905 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roper, R. L. et al. Monkeypox (Mpox) requires continued surveillance, vaccines, therapeutics and mitigating strategies. Vaccine 41, 3171–3177 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moss, B. & Smith, G. L. in Fields Virology Vol. 2 (eds Howley, P. M. & Knipe, D. M.) Ch. 16 (Wolters Kluwer, 2021).

  11. Shchelkunov, S. N. et al. Analysis of the Monkeypox virus genome. Virology 297, 172–194 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Rubins, K. H. et al. Comparative analysis of viral gene expression programs during poxvirus infection: a transcriptional map of the vaccinia and monkeypox genomes. PLoS ONE 3, e2628 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Alkhalil, A. et al. Inhibition of Monkeypox virus replication by RNA interference. Virol. J. 6, 188 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yu, H. B., Bruneau, R. C., Brennan, G. & Rothenburg, S. Battle Royale: innate recognition of poxviruses and viral immune evasion. Biomedicines 9, 765 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Senkevich, T. G., Yutin, N., Wolf, Y. I., Koonin, E. V. & Moss, B. Ancient gene capture and recent gene loss shape the evolution of orthopoxvirus-host interaction genes. mBio 12, e0149521 (2021).

    Article  PubMed  Google Scholar 

  16. Langland, J. O. & Jacobs, B. L. The role of the PKR-inhibitory genes, E3L and K3L, in determining vaccinia virus host range. Virology 299, 133–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Cao, J., Varga, J. & Deschambault, Y. Poxvirus encoded eIF2α homolog, K3 family proteins, is a key determinant of poxvirus host species specificity. Virology 541, 101–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Park, C. et al. Orthopoxvirus K3 orthologs show virus- and host-specific inhibition of the antiviral protein kinase PKR. PLoS Pathog. 17, e1009183 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arndt, W. D. et al. Monkeypox virus induces the synthesis of less dsRNA than vaccinia virus, and is more resistant to the anti-poxvirus drug, IBT, than vaccinia virus. Virology 497, 125–135 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Alcami, A. & Smith, G. L. A mechanism for inhibition of fever by a virus. Proc. Natl Acad. Sci. USA 93, 11029–11034 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Firth, C. et al. Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Mol. Biol. Evol. 27, 2038–2051 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Patrono, L. V. et al. Monkeypox virus emergence in wild chimpanzees reveals distinct clinical outcomes and viral diversity. Nat. Microbiol. 5, 955–965 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. De Maio, N. et al. Mutation rates and selection on synonymous mutations in SARS-CoV-2. Genome Biol. Evol. 13, evab087 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shu, L. L., Bean, W. J. & Webster, R. G. Analysis of the evolution and variation of the human influenza A virus nucleoprotein gene from 1933 to 1990. J. Virol. 67, 2723–2729 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elde, N. C. et al. Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. Cell 150, 831–841 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Likos, A. M. et al. A tale of two clades: Monkeypox viruses. J. Gen. Virol. 86, 2661–2672 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Happi, C. et al. Urgent need for a non-discriminatory and non-stigmatizing nomenclature for Monkeypox virus. PLoS Biol. 20, e3001769 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Forni, D., Molteni, C., Cagliani, R. & Sironi, M. Geographic structuring and divergence time frame of Monkeypox virus in the endemic region. J. Infect. Dis. 227, 742–751 (2023).

    Article  PubMed  Google Scholar 

  29. Li, H. et al. The evolving epidemiology of Monkeypox virus. Cytokine Growth Factor Rev. 68, 1–12 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kotwal, G. J., Isaacs, S. N., Mckenzie, R., Frank, M. M. & Moss, B. Inhibition of the complement cascade by the major secretory protein of vaccinia virus. Science 250, 827–830 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Isaacs, S. N., Kotwal, G. J. & Moss, B. Vaccinia virus complement-control protein prevents antibody-dependent complement-enhanced neutralization of infectivity and contributes to virulence. Proc. Natl Acad. Sci. USA 89, 628–632 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Girgis, N. M. et al. The vaccinia virus complement control protein modulates adaptive immune responses during infection. J. Virol. 85, 2547–2556 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. McCoy, W., Wang, X. L., Yokoyama, W., Hansen, T. & Fremont, D. Structural basis of MHCI antigen presentation sabotage by cowpox encoded protein CPXV203. J. Immunol. 188, 168.18 (2012).

    Article  Google Scholar 

  34. Ndodo, N. et al. Distinct monkeypox virus lineages co-circulating in humans before 2022. Nat. Med. 29, 2317–2324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gigante, C. M. et al. Multiple lineages of Monkeypox virus detected in the United States, 2021–2022. Science 378, 560–564 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vartanian, J. P., Guetard, D., Henry, M. & Wain-Hobson, S. Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science 320, 230–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Warren, C. J. et al. APOBEC3A functions as a restriction factor of human papillomavirus. J. Virol. 89, 688–702 (2015).

    Article  PubMed  Google Scholar 

  38. Forni, D., Cagliani, R., Pozzoli, U. & Sironi, M. An APOBEC3 mutational signature in the genomes of human-infecting orthopoxviruses. mSphere 8, e0006223 (2023).

    Article  PubMed  Google Scholar 

  39. Harris, R. S. & Dudley, J. P. APOBECs and virus restriction. Virology 479-480, 131–145 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Li, Y. L. et al. The structural basis for HIV-1 Vif antagonism of human APOBEC3G. Nature 615, 728–733 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kremer, M. et al. Vaccinia virus replication is not affected by APOBEC3 family members. Virol. J. 3, 86 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Deputy, N. P. et al. Vaccine effectiveness of JYNNEOS against Mpox disease in the United States. N. Engl. J. Med. 388, 2434–2443 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Freyn, A. W. et al. An mpox virus mRNA-lipid nanoparticle vaccine confers protection against lethal orthopoxviral challenge. Sci. Transl. Med. 15, eadg3540 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Warner, B. M. et al. In vitro and in vivo efficacy of tecovirimat against a recently emerged 2022 Monkeypox virus isolate. Sci. Transl. Med. 14, eade7646 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Frenois-Veyrat, G. et al. Tecovirimat is effective against Human Monkeypox virus in vitro at nanomolar concentrations. Nat. Microbiol. 7, 1951–1955 (2022).

    Article  PubMed  Google Scholar 

  46. Nguyen, B. T. et al. Early administration of tecovirimat shortens the time to mpox clearance in a model of human infection. PLoS Biol. 21, e3002249 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Desai, A. N. et al. Compassionate use of tecovirimat for the treatment of monkeypox infection. JAMA 328, 1348–1350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matias, W. R. et al. Tecovirimat for the treatment of human monkeypox: an initial series from Massachusetts, United States. Open Forum Infect. Dis. 9, ofac377 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mpox (Monkeypox)Democratic Republic of the Congo (World Health Organization, 2023); https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON493

  50. Heymann, D. L., Szczeniowski, M. & Esteves, K. Re-emergence of monkeypox in Africa: a review of the past six years. Br. Med. Bull. 54, 693–702 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Nolen, L. D. et al. Extended human-to-human transmission during a monkeypox outbreak in the Democratic Republic of the Congo. Emerg. Infect. Dis. 22, 1014–1021 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kibungu, E. M. et al. Clade I-associated mpox cases associated with sexual contact, the Democratic Republic of the Congo. Emerg. Infect. Dis. 30, 172–176 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yinka-Ogunleye, A. et al. Outbreak of human monkeypox in Nigeria in 2017–18: a clinical and epidemiological report. Lancet Infect. Dis. 19, 872–879 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Update on monkeypox (MPX) in Nigeria, epi-week: 52 (December 26, 2022–January 1, 2023). reliefweb https://reliefweb.int/report/nigeria/update-monkeypox-mpx-nigeria-epi-week-52-december-26-2022-january-1-2023 (2023).

  55. Mauldin, M. R. et al. Exportation of Monkeypox virus from the African continent. J. Infect. Dis. 225, 1367–1376 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Isidro, J. et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of Monkeypox virus. Nat. Med. 28, 1569–1572 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luna, N. et al. Monkeypox virus (MPXV) genomics: a mutational and phylogenomic analyses of B.1 lineages. Travel Med. Infect. Dis. 52, 102551 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kohli, R. M. & Isaacs, S. N. Mpox evolution: has the current outbreak revealed a pox on ‘U’? J. Infect. Dis. 227, 828–830 (2023).

    Article  PubMed  Google Scholar 

  59. O'Toole, Á. et al. APOBEC3 deaminase editing in mpox virus as evidence for sustained human transmission since at least 2016. Science 382, 595–600 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marwah, A. et al. Estimating the size of the Monkeypox virus outbreak in Nigeria and implications for global control. J. Travel Med. 29, taac149 (2022).

    Article  PubMed  Google Scholar 

  61. Khodakevich, L., Jezek, Z. & Kinzanzka, K. Isolation of Monkeypox virus from wild squirrel infected in Nature. Lancet 1, 98–99 (1986).

    Article  CAS  PubMed  Google Scholar 

  62. Jezek, Z. & Fenner, F. Human monkeypox. Monogr. Virol. 17, 1–140 (1988).

    Article  Google Scholar 

  63. Doty, J. B. et al. Assessing monkeypox virus prevalence in small mammals at the human-animal interface in the Democratic Republic of the Congo. Viruses 9, 283 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mariën, J. et al. Monkeypox viruses circulate in distantly-related small mammal species in the Democratic Republic of the Congo. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-414280/v1 (2021).

  65. Reynolds, M. G. et al. A silent enzootic of an orthopoxvirus in Ghana, West Africa: evidence for multi-species involvement in the absence of widespread human disease. Am. J. Trop. Med. Hyg. 82, 746–754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Radonic, A. et al. Fatal monkeypox in wild-living sooty mangabey, Côte d’Ivoire, 2012. Emerg. Infect. Dis. 20, 1009–1011 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Johnson, R. F. et al. Comparative analysis of monkeypox virus infection of cynomolgus macaques by the intravenous or intrabronchial inoculation route. J. Virol. 85, 2112–2125 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Earl, P. L. et al. Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature 428, 182–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Huggins, J. et al. Nonhuman primates are protected from smallpox virus or monkeypox virus challenges by the antiviral drug ST-246. Antimicrob. Agents Chemother. 53, 2620–2625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, N. H. et al. Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Virology 340, 46–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Saijo, M. et al. Virulence and pathophysiology of the Congo Basin and West African strains of Monkeypox virus in non-human primates. J. Gen. Virol. 90, 2266–2271 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Kindrachuk, J. et al. Systems kinomics demonstrates Congo Basin monkeypox virus infection selectively modulates host cell signaling responses as compared to West African monkeypox virus. Mol. Cell. Proteom. 11, M111.015701 (2012).

    Article  Google Scholar 

  73. Hutson, C. L. et al. Transmissibility of the monkeypox virus clades via respiratory transmission: investigation using the prairie dog-monkeypox virus challenge system. PLoS ONE 8, e55488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Keckler, M. S. et al. Establishment of the black-tailed prairie dog (Cynomys ludovicianus) as a novel animal model for comparing smallpox vaccines administered preexposure in both high- and low-dose monkeypox virus challenges. J. Virol. 85, 7683–7698 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schultz, D. A., Sagartz, J. E., Huso, D. L. & Buller, R. M. L. Experimental infection of an African dormouse (Graphiurus kelleni) with monkeypox virus. Virology 383, 86–92 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Americo, J. L., Earl, P. L. & Moss, B. Virulence differences of mpox (monkeypox) virus clades I, IIa and IIb.1 in a small animal model. Proc. Natl Acad. Sci. USA 120, e2220415120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Port, J. R. et al. Rectal and vaginal challenge with mpox virus increases virus dissemination and contact transmission compared to skin challenge in the multimammate rat (Mastomys natalensis). Preprint at bioRxiv https://doi.org/10.1101/2023.05.07.539622 (2023).

  78. Osorio, J. E., Iams, K. P., Meteyer, C. U. & Rocke, T. E. Comparison of Monkeypox viruses pathogenesis in mice by in vivo imaging. PLoS ONE 4, e6592 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hutson, C. L. et al. Comparison of West African and Congo Basin monkeypox viruses in BALB/c and C57BL/6 mice. PLoS ONE 5, e8912 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Americo, J. L., Moss, B. & Earl, P. L. Identification of wild-derived inbred mouse strains highly susceptible to monkeypox virus infection for use as small animal models. J. Virol. 84, 8172–8180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Earl, P. L., Americo, J. L. & Moss, B. Genetic studies of the susceptibility of classical and wild-derived inbred mouse strains to monkeypox virus. Virology 481, 161–165 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Earl, P. L., Americo, J. L. & Moss, B. Insufficient innate immunity contributes to the susceptibility of the castaneous mouse to orthopoxvirus infection. J. Virol. 91, e01042-17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Earl, P. L., Americo, J. L. & Moss, B. Natural killer cells expanded in vivo or ex vivo with IL-15 overcomes the inherent susceptibility of CAST mice to lethal infection with orthopoxviruses. PLoS Pathog. 16, e1008505 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lopera, J. G., Falendysz, E. A., Rocke, T. E. & Osorio, J. E. Attenuation of monkeypox virus by deletion of genomic regions. Virology 475, 129–138 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Hudson, P. N. et al. Elucidating the role of the complement control protein in monkeypox pathogenicity. PLoS ONE 7, e35086 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Estep, R. D. et al. Deletion of the monkeypox inhibitor of complement enzymes locus impacts the adaptive immune response to Monkeypox virus in a non human primate model of infection. J. Virol. 85, 9527–9542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, P. et al. Mpox virus infection and drug treatment modelled in human skin organoids. Nat. Microbiol. 8, 2067–2079 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Tomori, O. & Ogoina, D. Monkeypox: the consequences of neglecting a disease, anywhere. Science 377, 1261–1263 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Reynolds, M. G., Doty, J. B., McCollum, A. M., Olson, V. A. & Nakazawa, Y. Monkeypox re-emergence in Africa: a call to expand the concept and practice of One Health. Expert Rev. Anti Infect. Ther. 17, 129–139 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tesh, R. B. et al. Experimental infection of ground squirrels (Spermophilius tridecemlineatus) with monkeypox virus. Emerg. Infect. Dis. 10, 1563–1567 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sbrana, E., Xiao, S. Y., Newman, P. C. & Tesh, R. B. Comparative pathology of North American and central African strains of monkeypox virus in a ground squirrel model of the disease. Am. J. Trop. Med. Hyg. 76, 155–164 (2007).

    Article  PubMed  Google Scholar 

  92. Hutson, C. L. et al. A prairie dog animal model of systemic orthopoxvirus disease using West African and Congo Basin strains of monkeypox virus. J. Gen. Virol. 90, 323–333 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Hutson, C. L. et al. Dosage comparison of Congo Basin and West African strains of monkeypox virus using a prairie dog animal model of systemic orthopoxvirus disease. Virology 402, 72–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Hutson, C. L. et al. Comparison of monkeypox virus clade kinetics and pathology within the prairie dog animal model using a serial sacrifice study design. BioMed. Res. Int. https://doi.org/10.1155/2015/965710 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Deschambault, Y. et al. Experimental infection of North American deer mice with clade I and II Monkeypox virus isolates. Emerg. Infect. Dis. 29, 858–860 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Falendysz, E. A. et al. Characterization of monkeypox virus infection in African rope squirrels (Funisciurus sp.). PLoS Negl. Trop. Dis. 11, e0005809 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Falendysz, E. A. et al. Further assessment of monkeypox virus infection in Gambian pouched rats (Cricetomys gambianus) using in vivo bioluminescent imaging. PLoS Negl. Trop. Dis. 9, e0004130 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Support was provided by the Division of Intramural Research, NIAID, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Moss.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Data 1

Host interaction proteins of CPXV and MPXV clades.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moss, B. Understanding the biology of monkeypox virus to prevent future outbreaks. Nat Microbiol (2024). https://doi.org/10.1038/s41564-024-01690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41564-024-01690-1

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology