Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Charged particles in radiation oncology

Abstract

Radiotherapy is one of the most common and effective therapies for cancer. Generally, patients are treated with X-rays produced by electron accelerators. Many years ago, researchers proposed that high-energy charged particles could be used for this purpose, owing to their physical and radiobiological advantages compared with X-rays. Particle therapy is an emerging technique in radiotherapy. Protons and carbon ions have been used for treating many different solid cancers, and several new centers with large accelerators are under construction. Debate continues on the cost:benefit ratio of this technique, that is, on whether the high costs of accelerators and beam delivery in particle therapy are justified by a clear clinical advantage. This Review considers the present clinical results in the field, and identifies and discusses the research questions that have resulted with this technique.

Key Points

  • Particle therapy is an emerging technique in radiotherapy, and several new centers are under construction all over the world

  • Protons are ideal for conformal treatment, and already have applications for pediatric tumors, where reduced late morbidity is expected owing to the reduced integral dose to normal tissue

  • Heavy ions (carbon) provide not only physical, but also biological advantages compared with X-rays (such as high relative biological effectiveness and reduced oxygen enhancement ratio in the tumor region)

  • Clinical trials in Japan and Germany with carbon ions provided excellent results, especially for radiotherapy-resistant tumors, and suggest that hypofractionation is effective with particles

  • Spot scanning provides better dose profiles than passive beam modulation, but requires corrections for treating moving targets

  • Several research issues remain to be studied towards a wide application of heavy-ion therapy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Charged particles have an advantageous radiation dose–tissue depth profile compared with photons.
Figure 2: Comparison of treatment plans for a large target volume in the base of the skull.
Figure 3: A pediatric tumor treated with proton therapy.
Figure 4: The principles of intensity-controlled magnetic raster scanning.
Figure 5: The rotating gantry installed at the Heidelberg Ion Therapy Center facility.

Similar content being viewed by others

References

  1. Lichter, A. S. & Lawrence, T. S. Recent advances in radiation oncology. N. Engl. J. Med. 332, 371–379 (1995).

    Article  CAS  Google Scholar 

  2. Halperin, E. C. Particle therapy and treatment of cancer. Lancet Oncol. 7, 676–685 (2006).

    Article  CAS  Google Scholar 

  3. Tobias, C. A. et al. Radiological physics characteristics of the extracted heavy ion beams of the Bevatron. Science 174, 1131–1134 (1971).

    Article  CAS  Google Scholar 

  4. Cucinotta, F. A. & Durante, M. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol. 7, 431–435 (2006).

    Article  CAS  Google Scholar 

  5. Tobias, C. A. et al. Molecular and cellular radiobiology of heavy ions. Int. J. Radiat. Oncol. Biol. Phys. 8, 109–120 (1982).

    Article  Google Scholar 

  6. Brahme, A. Recent advances in light ion radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 58, 603–616 (2004).

    Article  Google Scholar 

  7. Nomiya, T. et al. Carbon ion radiation therapy for primary renal cell carcinoma: initial clinical experience. Int. J. Radiat. Oncol. Biol. Phys. 72, 828–833 (2008).

    Article  Google Scholar 

  8. Li, Q. et al. Heavy-ion conformal irradiation in shallow-seated tumor therapy terminal at HIRFL. Med. Biol. Eng. Comput. 45, 1037–1043 (2007).

    Article  Google Scholar 

  9. Combs, S. E. Radiation therapy. Recent Results Cancer Res. 171, 125–140 (2009).

    Article  Google Scholar 

  10. Particle Therapy Cooperative Group: an organization for those interested in proton, light ion and heavy charged particle radiotherapy [online], (2009).

  11. Levin, W. P. et al. Proton beam therapy. Br. J. Cancer 93, 849–854 (2005).

    Article  CAS  Google Scholar 

  12. Greco, C. & Wolden, S. Current status of radiotherapy with protons and light ion beams. Cancer 109, 1227–1238 (2007).

    Article  Google Scholar 

  13. Yock, T. I. & Tarbell, N. J. Proton beam radiotherapy for treatment in pediatric brain tumors. Nat. Clin. Pract. Oncol. 1, 97–103 (2004).

    Article  Google Scholar 

  14. Schulz-Ertner, D. & Tsujii, H. Particle radiation therapy using proton and heavier ion beams. J. Clin. Oncol. 25, 953–964 (2007).

    Article  Google Scholar 

  15. Tsujii, H. et al. Clinical results of carbon ion radiotherapy at NIRS. J. Radiat. Res. 48, A1–A13 (2007).

    Article  CAS  Google Scholar 

  16. Schulz-Ertner, D. et al. Effectiveness of carbon ion radiotherapy in the treatment of skull-base chordomas. Int. J. Radiat. Oncol. Biol. Phys. 68, 449–457 (2007).

    Article  Google Scholar 

  17. Tsujii, H. et al. Clinical advantages of carbon ion radiotherapy. N. J. Phys. 10, 075009 (2008).

    Article  Google Scholar 

  18. Brada, M. et al. Proton therapy in clinical practice: current clinical evidence. J. Clin. Oncol. 25, 965–970 (2007).

    Article  Google Scholar 

  19. Hegelich, B. M. et al. Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441–444 (2006).

    Article  CAS  Google Scholar 

  20. Kraft, G. & Kraft, S. D. Research needed for improving heavy-ion therapy. N. J. Phys. 11, 025001 (2009).

    Article  Google Scholar 

  21. Parodi, K. et al. Comparison between in-beam and offline positron emission tomography imaging of proton and carbon ion therapeutic irradiation at synchrotron- and cyclotron-based facilities. Int. J. Radiat. Oncol. Biol. Phys. 71, 945–956 (2008).

    Article  Google Scholar 

  22. Pedroni, E. et al. Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams. Phys. Med. Biol. 50, 541–561 (2005).

    Article  CAS  Google Scholar 

  23. Saito, N. et al. Speed and accuracy of a beam tracking system for treatment of moving targets with scanned ion beams. Phys. Med. Biol. 54, 4849–4862 (2009).

    Article  CAS  Google Scholar 

  24. Paganetti, H. et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int. J. Radiat. Oncol. Biol. Phys. 53, 407–421 (2002).

    Article  Google Scholar 

  25. Gueulette, J. & Wambersie, A. Comparison of the methods of specifying carbon ion doses at NIRS and GSI. J. Radiat. Res. 48, A97–A102 (2007).

    Article  Google Scholar 

  26. Matsufuji, N. et al. Specification of carbon ion dose at the National Institute of Radiological Sciences (NIRS). J. Radiat. Res. 48, A81–A86 (2007).

    Article  Google Scholar 

  27. Elsässer, T. et al. Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo. Int. J. Radiat. Oncol. Biol. Phys. 71, 866–872 (2008).

    Article  Google Scholar 

  28. Uzawa, A. et al. Comparison of biological effectiveness of carbon-ion beams in Japan and Germany. Int. J. Radiat. Oncol. Biol. Phys. 73, 1545–1551 (2009).

    Article  CAS  Google Scholar 

  29. Kraft-Weyrather, W. et al. RBE for carbon track-segment irradiation in cell lines of differing repair capacity. Int. J. Radiat. Biol. 75, 1357–1364 (1999).

    Article  Google Scholar 

  30. Baumann, M. et al. Exploring the role of cancer stem cells in radioresistance. Nat. Rev. Cancer 8, 545–554 (2008).

    Article  CAS  Google Scholar 

  31. Vazquez, A. et al. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat. Rev. Drug Discov. 7, 979–987 (2008).

    Article  CAS  Google Scholar 

  32. Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 880–883 (2009).

    Article  Google Scholar 

  33. Hamada, N. Recent insights into the biological action of heavy-ion radiation. J. Radiat. Res. 50, 1–9 (2009).

    Article  Google Scholar 

  34. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31 (1995).

    Article  CAS  Google Scholar 

  35. Bernier, J. et al. Molecular therapy in head and neck oncology. Nat. Rev. Clin. Oncol. 6, 266–277 (2009).

    Article  CAS  Google Scholar 

  36. Sonveaux, P. et al. Irradiaton-induced angiogenesis through the upregulation of the nitric oxide pathway: implications for tumor radiotherapy. Cancer Res. 63, 1012–1019 (2003).

    CAS  PubMed  Google Scholar 

  37. Takahashi, Y. et al. Heavy ion irradiation inhibits in vitro angiogenesis even at sublethal dose. Cancer Res. 63, 4253–4257 (2003).

    CAS  PubMed  Google Scholar 

  38. Ogata, T. et al. Particle irradiation suppresses metastatic potential of cancer cells. Cancer Res. 65, 113–120 (2005).

    CAS  PubMed  Google Scholar 

  39. Goetze, K. et al. The impact of conventional and heavy ion irradiation on tumor cell migration in vitro. Int. J. Radiat. Biol. 83, 889–896 (2007).

    Article  CAS  Google Scholar 

  40. Akino, Y. et al. Carbon-ion beam irradiation effectively suppresses migration and invasion of human non-small-cell lung cancer cells. Int. J. Radiat. Oncol. Biol. Phys. 75, 475–481 (2009).

    Article  CAS  Google Scholar 

  41. Rofstad, E. K. et al. Increased metastatic dissemination in human melanoma xenografts after subcurative radiation treatment: radiation-induced increase in fraction of hypoxic cells and hypoxia-related upregulation of urokinase-type plasminogen activator receptor. Cancer Res. 64, 13–18 (2004).

    Article  CAS  Google Scholar 

  42. Hall, E. J. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int. J. Radiat. Oncol. Biol. Phys. 65, 1–7 (2006).

    Article  Google Scholar 

  43. Brenner, D. J. & Hall, E. J. Secondary neutrons in clinical proton radiotherapy: a charged issue. Radiother. Oncol. 86, 165–170 (2008).

    Article  Google Scholar 

  44. St Clair, W. H. et al. Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 58, 727–734 (2004).

    Article  CAS  Google Scholar 

  45. Combs, S. E. et al. Carbon ion radiotherapy for pediatric patients and young adults treated for tumors of the skull base. Cancer 115, 1348–1355 (2009).

    Article  Google Scholar 

  46. Brenner, D. J. et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc. Natl Acad. Sci. USA 100, 13761–13766 (2003).

    Article  CAS  Google Scholar 

  47. Durante, M. & Cucinotta, F. A. Heavy ion carcinogenesis and human space exploration. Nat. Rev. Cancer 8, 465–472 (2008).

    Article  CAS  Google Scholar 

  48. Durante, M. et al. Karyotypes of human lymphocytes exposed to high-energy iron ions. Radiat. Res. 158, 581–590 (2002).

    Article  CAS  Google Scholar 

  49. Durante, M. et al. X-rays vs. carbon-ion tumor therapy: cytogenetic damage in lymphocytes. Int. J. Radiat. Oncol. Biol. Phys. 47, 793–798 (2000).

    Article  CAS  Google Scholar 

  50. Paganetti, H. The impact of protons on the incidence of second malignancies in radiotherapy by Eric J. Hall. Technol. Cancer Res. Treat. 6 (Suppl. 31–34), 661–662 (2007).

    CAS  PubMed  Google Scholar 

  51. Chung, C. S. et al. Comparative analysis of secondary malignancy risk in patients treated with proton therapy versus conventional photon therapy. Int. J. Radiat. Oncol. Biol. Phys. 72, S8 (2008).

    Article  Google Scholar 

  52. Jäkel, O. et al. On the cost-effectiveness of carbon ion radiation therapy for skull base chordoma. Radiother. Oncol. 83, 133–138 (2007).

    Article  Google Scholar 

  53. Jones, B. The case for particle therapy. Br. J. Radiol. 79, 24–31 (2006).

    Article  CAS  Google Scholar 

  54. Konski, A. et al. Is proton beam therapy cost effective in the treatment of adenocarcinoma of the prostate? J. Clin. Oncol. 25, 3603–3608 (2007).

    Article  Google Scholar 

  55. Suit, H. et al. Should positive phase III clinical trial data be required before proton beam therapy is more widely adopted? No. Radiother. Oncol. 86, 148–153 (2008).

    Article  Google Scholar 

  56. Brada, M. et al. Evidence for proton therapy. J. Clin. Oncol. 26, 2592–2593 (2008).

    Article  Google Scholar 

  57. Jäkel, O. et al. The future of heavy ion therapy. Med. Phys. 35, 5653–5663 (2008).

    Article  Google Scholar 

  58. Pijls-Johannesma, M. et al. Cost-effectiveness of particle therapy: current evidence and future needs. Radiother. Oncol. 89, 127–134 (2008).

    Article  Google Scholar 

  59. Pijls-Johannesma, M. et al. Particle therapy in lung cancer: where do we stand? Cancer Treat. Rev. 34, 259–267 (2008).

    Article  CAS  Google Scholar 

  60. Sugane, T. et al. Carbon ion radiotherapy for elderly patients 80 years and older with stage I non-small cell lung cancer. Lung Cancer 64, 45–50 (2009).

    Article  Google Scholar 

  61. Miyamoto, T. et al. Curative treatment of stage I non-small cell lung cancer with carbon ion beams using a hypo-fractionated regimen. Int. J. Radiat. Oncol. Biol. Phys. 67, 750–758 (2007).

    Article  CAS  Google Scholar 

  62. Miyamoto, T. et al. Carbon ion radiotherapy for stage I non-small cell lung cancer using a regimen of four fractions during 1 week. J. Thorac. Oncol. 2, 916–926 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Durante.

Ethics declarations

Competing interests

M. Durante declares no competing interests. J. Loeffler is a Consultant for Procure Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durante, M., Loeffler, J. Charged particles in radiation oncology. Nat Rev Clin Oncol 7, 37–43 (2010). https://doi.org/10.1038/nrclinonc.2009.183

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing