Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Pharmacogenetics and pharmacogenomics: origin, status, and the hope for personalized medicine

Abstract

Pharmacogenetics arose with studies of single genes, which had major effects on the action of particular drugs. It turned into pharmacogenomics through realization that the controls of most drug responses are multifactorial. Then, variable gene expression posed new problems, for example what do drugs do to genes, or how useful is any genetic pretesting of a person? A common disease may be caused by different groups of genes in different people, who therefore require different drugs for treatment. Personlized medicine is currently represented by a physician's attention to a patients age, sex, or ethnic backround, that is groups showing smaller genetic variation than is typical for general humanity. Occasionally, there is also the use of single-gene pretesting of a patient before drug administration. Over time, improvements in multigenic testing promise to increase the role of personalized medicine. However, the many pharmacogenomic complexities, and particularly time-dependent changes of gene expression, will never allow personalized medicine to become an error-free entity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Garrod AE . Inborn Factors in Disease: An Essay, Oxford University Press: New York, NY.

  2. Haldane JBS . Disease and evolution. Ric Sci 1949; 19: 68–75.

    Google Scholar 

  3. Snyder LH . Studies in human inheritance. IX. The inheritance of taste sensitivity in man. Ohio J Sci 1932; 32: 436–440.

    Google Scholar 

  4. Waldenstrom J . Studien uber Porphyrie. Acta Med Scand 1937; 82 (Suppl): 254–258.

    CAS  Google Scholar 

  5. Sawin PB, Glick D . Hydrolysis of atropine by esterase present in rabbit serum. Proc Natl Acad Sci USA 1943; 29: 55–59.

    Article  CAS  Google Scholar 

  6. Beutler E . Study of glucose-6-phosphate dehydrogenase: history and molecular biology. Am J Hematol 1993; 44: 215–216.

    Article  Google Scholar 

  7. Luzzatto L, Mehta A, Vulliamy T . Glucose-6-phosphate dehydrogenase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds). The Metabolic and MolecularBases of Inherited Disease. McGraw-Hill: New York, NY, 2001 pp 4517–4553.

    Google Scholar 

  8. Kalow W . Familial incidence of low pseudocholinesterase level. Lancet 1956: 576.

  9. Bonicke R, Lisboa BP . Uber die Erbbedingtheit der intraindividuellen Konstanz der Isoniazidausscheidung beim Menschen. Naturwissenschaften 1957; 44: 314–320.

    Article  CAS  Google Scholar 

  10. Motulsky AG . Drug reactions, enzymes, and biochemical genetics. J Am Med Assoc 1957; 165: 835–837.

    Article  CAS  Google Scholar 

  11. Vogel F . Moderne Probleme der Humangenetic. Ergeb Inn Med Kinderheilkd 1959; 12: 52–125.

    Google Scholar 

  12. Kalow W . Pharmacogenetics: Heredity and the Response to Drugs. W.B. Saunders, Philadelphia, PA: London, 1962.

    Google Scholar 

  13. Mahgoup A, Dring L, Idle JR, Lancaster R, Smith RL . Polymorphic hydroxylation of debrisoquine in man. Lancet 1977; 2: 584–586.

    Article  Google Scholar 

  14. Smith R . The discovery of the debrisoquine hydroxylation polymorphism: scientific and clinical impact and consequences. Toxicology 2001; 168: 11–19.

    CAS  PubMed  Google Scholar 

  15. Eichelbaum M, Spanbrucker N, Steinke BDengler HJ . Defective N-oxydation of sparteine in man: a new pharmacogenetic defect. Eur J Clin Pharmacol 1997; 16: 183–187.

    Article  Google Scholar 

  16. Maraz D, Legrand M, Sabbagh N et al. Polymorphism of the cytochrome P450 CYP2D6 in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics 1997; 7: 197–202.

    Google Scholar 

  17. Ingelman-Sundberg M . Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J 2005; 5: 6–13.

    Article  CAS  Google Scholar 

  18. Kalow W . Interethnic differences in drug response. In: Kalow W, Meyer UA, Tyndale RF (eds). Pharmacogenomics. Marcel Dekker Inc., New York, 2001 pp 109–134.

    Google Scholar 

  19. Weber WW . Pharmacogenetics-receptors. In: Kalow W, Meyer UA, Tyndale RF (eds). Pharmacogenomics. Marcel Dekker Inc.: New York, 2001 pp 51–80.

    Google Scholar 

  20. Ho RH, Kim RB . Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 2005; 78: 260–277.

    Article  CAS  Google Scholar 

  21. Bondy B . Pharmacogenetics in depression and antidepressants. Dialogues Clin Neurosci 2005; 7: 223–230.

    PubMed  PubMed Central  Google Scholar 

  22. Kalow W . Ethnic differences in drug metabolism. Clin Pharmacokinetic 1982; 7: 373–400.

    Article  CAS  Google Scholar 

  23. Kalow W, Tang BK, Kadar D et al. A method to study drug metabolism in populations: racial differences in amobarbital metabolism. Clin Pharmacol Ther 1979; 6: 766–776.

    Article  Google Scholar 

  24. Oroszi G, Goldman D . Alcoholism: genes mechanisms. Pharmacogenomics 2004; 5: 1037–1048.

    Article  CAS  Google Scholar 

  25. Bai X, Edwards J, Ju J . Molecular engineering approaches for DNA sequencing and analysis. Expert Rev Mol Diagn 2005; 5: 797–808.

    Article  CAS  Google Scholar 

  26. Reyzer ML, Caprioli RM . MALDI mass spectometry for direct tissue analysis: a new tool for biomarker discovery. J Proteome Res 2005; 4: 1138–1142.

    Article  CAS  Google Scholar 

  27. Romkes M, Buch SC . Strategies for measurement of biotransformation enzyme gene expression. Methods Mol Biol 2005; 291: 387–398.

    CAS  PubMed  Google Scholar 

  28. Kersten B, Wanker EE, Hoheisel JD, Angenendt P . Multiplex approaches in protein microarray technology. Expert Rev Proteomics 2005; 2: 499–510.

    Article  CAS  Google Scholar 

  29. Cordell HJ, Clayton DG . Genetic association studies. Lancet 2005; 366: 1121–1131.

    Article  Google Scholar 

  30. Innocenti F (ed). Pharmacogenomics: Methods and Protocols. Humana Press: Totowa, New Jersey, 2005.

    Book  Google Scholar 

  31. Couzin J . Small RNAs make big splash. Science 2005; 298: 2296–2297.

    Article  Google Scholar 

  32. Madden SL, Wang C, Landes G . Serial analysis of gene expression; transcriptional insights into functional biology. In: Kalow W, Meyer UA, Tyndale RF (eds). Pharmacogenomics. Marcel Dekker Inc.: New York, 2002 pp 223–251.

    Google Scholar 

  33. Burgess JK . Gene expression studies using microarrays. Clin Exp Pharmacol Physiol 2001; 28: 321–328.

    Article  CAS  Google Scholar 

  34. Wolffe AP, Matzke MA . Epigenetics: regulation through repression. Science 1999; 15: 481–486.

    Article  Google Scholar 

  35. Cirelli C . A molecular window on sleep: changes in gene expression between sleep and wakefulness. Neuroscientist 2005; 11: 63–74.

    Article  CAS  Google Scholar 

  36. Rossi EL . Psychosocial genomics: gene expression, neurogenesis, and human experience in mind-body medicine. Adv Mind Body Med 2002; 18: 22–30.

    PubMed  Google Scholar 

  37. Thompson DBasu-Modak S, Gordon M et al. Exercise-induced expression of heme oxygenase-1 in human lymphocytes. Free Radic Res 2005; 39: 63–69.

    Article  Google Scholar 

  38. Roche HM, Phillips C, Gibney MJ . The metabolic syndrome: the crossroads of diet and genetics. Proc Nutr Soc 2005; 64: 371–377.

    Article  CAS  Google Scholar 

  39. Conney AH . Pharmacological implications of microsomal enzyme induction. Pharmac Rev 1967; 19: 317–366.

    CAS  Google Scholar 

  40. Mattick JS . The regulatory architecture of the human genome. Asia Pac L Clin Nutr 2004; 13 (Suppl): S14.

    Google Scholar 

  41. Rhodes JS, Crabbe JC . Gene expression induced by drugs of abuse. CurrOpin Pharmacol 2005; 1: 26–33.

    Google Scholar 

  42. The Royal Society. Personalised medicines: hopes and realities. Policy Document 2005; 18: 1–52.

  43. King RA, Rotter JI, Motulsky AG (eds). The Genetic Basis of Common Diseases. Oxford University Press: Minneapolis, 2001.

    Google Scholar 

  44. Weber WW . Pharmacogenetics. Oxford University Press: New York, Oxford, 1997.

    Google Scholar 

  45. Licinio J, Wong Ma-Li (eds). Pharmacogenomics: The Search for Individualized Therapies. Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002.

    Book  Google Scholar 

  46. Silber BM . Pharmacogenomics, biomarkers, and the promise of personalized medicine. In: Kalow W, Meyer UA, Tyndale RF (eds). Pharmacogenomics. Marcel Dekker Inc.: New York, 2001 pp 11–32.

    Google Scholar 

  47. Kalow W . Pharmacogenetics and personalized medicine. Fundamental Clin Pharmacol 2002; 16: 337–342.

    Article  CAS  Google Scholar 

  48. Lennard L . TPMT in the treatment of Crohn's disease with azathioprine. Gut 2002; 51: 143–146.

    Article  CAS  Google Scholar 

  49. Schwartz GL, Turner ST . Pharmacogenetics of antihypertensive drug responses. Am J Pharmacogenomics 2004; 4: 151–160.

    Article  CAS  Google Scholar 

  50. Herman D, Locatelli I, Grabnar I et al. Influence of CYP2C9 polymorphism, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J 2005; 5: 193–202.

    Article  CAS  Google Scholar 

  51. Bonicke R, Reif W . Enzymatische inactivierung von isonicotinesaure-hydrazid in menschlichen und tierischen organisms. Arch Exp Pathol Pharmakol 1953; 220: 321–333.

    Article  CAS  Google Scholar 

  52. Misteli T . Concepts of nuclear architecture. Bioassays 2005; 27: 477–487.

    Article  CAS  Google Scholar 

  53. Cavalli-Sforza LL, Manozzi P, Piazza A . The History and Geography of Human Genes. Princeton University Press: Princeton, NJ, 1994.

    Google Scholar 

  54. Fitzpatrick D, Wilson CB . Methylation and demethylation in the regulation of genes, cells and responses in the immune system. Clin Immunol 2003; 109: 37–45.

    Article  CAS  Google Scholar 

  55. Jones C . Genetics: overviews and issues in child health. Pediatric Nurs 2004; 16: 37–42.

    Google Scholar 

  56. Ershler WB, Keller ET . Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Ann Rev Med 2005; 51: 245–270.

    Article  Google Scholar 

  57. Jochmann N, Stangl K, Garbe E et al. Female-specific aspects in the pharmcotherapy of chronic cardiovascular diseases. Eur Heart J 2005; 26: 1585–1595.

    Article  CAS  Google Scholar 

  58. Taylor ALCohn JN, Worcel M et al. The African-American heart failure trial: Background, rationale and significance. Natl Med Assoc 2002; 94: 762–769.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Kalow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalow, W. Pharmacogenetics and pharmacogenomics: origin, status, and the hope for personalized medicine. Pharmacogenomics J 6, 162–165 (2006). https://doi.org/10.1038/sj.tpj.6500361

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500361

Keywords

This article is cited by

Search

Quick links