Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The pharmacogenomics of osteosarcoma

Abstract

Osteosarcoma (OS), the most common malignant tumor of bone, is presently treated with multidrug neoadjuvant chemotherapy protocols, which allow to cure 60–65% of patients but also induce toxicity events that cannot be predicted or efficiently prevented. The identification and validation of pharmacogenomic biomarkers is, therefore, absolutely warranted to provide the bases for planning personalized treatments with the aim to increase the therapeutic benefits and to avoid or limit unnecessary toxicities. As several targeted therapies against molecular and immunological markers in OS are presently under clinical investigation, it may be speculated that some new agents for innovative treatments may emerge in the next years. However, the real improvement of therapeutic perspectives for OS is strictly connected to the identification of pharmacogenomic biomarkers that may stratify patients in responders or non-responders and identify those individuals with higher susceptibility to treatment-associated toxicity. This review provides an overview of the pharmacogenomic biomarkers identified so far in OS, which appear to be promising candidates for a translation to clinical practice, after further investigation and/or prospective validation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Ferrari S, Serra M . An update on chemotherapy for osteosarcoma. Expert Opin Pharmacother 2015; 16: 2727–2736.

    Article  CAS  PubMed  Google Scholar 

  2. Hattinger CM, Fanelli M, Tavanti E, Vella S, Ferrari S, Picci P et al. Advances in emerging drugs for osteosarcoma. Expert Opin Emerg Drugs 2015; 20: 495–514.

    Article  CAS  PubMed  Google Scholar 

  3. Picci P . Classic osteosarcoma. In: Picci P, Manfrini M, Fabbri N, Gambarotti M, Vanel DAtlas of Musculoskeletal Tumors and Tumorlike Lesions. . Springer International Publishing: Switzerland, 2014, pp 147–152.

    Chapter  Google Scholar 

  4. Bruland OS, Pihl A . On the current management of osteosarcoma. A critical evaluation and a proposal for a modified treatment strategy. Eur J Cancer 1997; 33: 1725–1731.

    Article  CAS  PubMed  Google Scholar 

  5. Gatta G, Botta L, Rossi S, Aareleid T, Bielska-Lasota M, Clavel J et al. Childhood cancer survival in Europe 1999-2007: results of EUROCARE-5—a population-based study. Lancet Oncol 2014; 15: 35–47.

    Article  PubMed  Google Scholar 

  6. Kager L, Zoubek A, Potschger U, Kastner U, Flege S, Kempf-Bielack B et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol 2003; 21: 2011–2018.

    Article  PubMed  Google Scholar 

  7. Anninga JK, Gelderblom H, Fiocco M, Kroep JR, Taminiau AH, Hogendoorn PC et al. Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand? Eur J Cancer 2011; 47: 2431–2445.

    Article  CAS  PubMed  Google Scholar 

  8. Ferrari S, Palmerini E . Adjuvant and neoadjuvant combination chemotherapy for osteogenic sarcoma. Curr Opin Oncol 2007; 19: 341–346.

    Article  CAS  PubMed  Google Scholar 

  9. Evans WE, Relling MV . Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286: 487–491.

    Article  CAS  PubMed  Google Scholar 

  10. Savonarola A, Palmirotta R, Guadagni F, Silvestris F . Pharmacogenetics and pharmacogenomics: role of mutational analysis in anti-cancer targeted therapy. Pharmacogenomics J 2012; 12: 277–286.

    Article  CAS  PubMed  Google Scholar 

  11. Weng L, Zhang L, Peng Y, Huang RS . Pharmacogenetics and pharmacogenomics: a bridge to individualized cancer therapy. Pharmacogenomics 2013; 14: 315–324.

    Article  CAS  PubMed  Google Scholar 

  12. Yu W, Clyne M, Khoury MJ, Gwinn M . Phenopedia and Genopedia: disease-centered and gene-centered views of the evolving knowledge of human genetic associations. Bioinformatics 2010; 26: 145–146.

    Article  CAS  PubMed  Google Scholar 

  13. Poos K, Smida J, Nathrath M, Maugg D, Baumhoer D, Neumann A et al. Structuring osteosarcoma knowledge: an osteosarcoma-gene association database based on literature mining and manual annotation. Database (Oxford) 2014; 2014: article ID bau042.

  14. Chou AJ, Gorlick R . Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev Anticancer Ther 2006; 6: 1075–1085.

    Article  CAS  PubMed  Google Scholar 

  15. Hattinger CM, Pasello M, Ferrari S, Picci P, Serra M . Emerging drugs for high-grade osteosarcoma. Expert Opin Emerg Drugs 2010; 15: 615–634.

    Article  CAS  PubMed  Google Scholar 

  16. Hattinger CM, Serra M . Role of pharmacogenetics of drug-metabolizing enzymes in treating osteosarcoma. Expert Opin Drug Metab Toxicol 2015; 11: 1449–1463.

    Article  CAS  PubMed  Google Scholar 

  17. Gorlick R, Anderson P, Andrulis I, Arndt C, Beardsley GP, Bernstein M et al. Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary. Clin Cancer Res 2003; 9: 5442–5453.

    PubMed  Google Scholar 

  18. O'Day K, Gorlick R . Novel therapeutic agents for osteosarcoma. Expert Rev Anticancer Ther 2009; 9: 511–523.

    Article  CAS  PubMed  Google Scholar 

  19. Duffaud F, Egerer G, Ferrari S, Rassam H, Boecker U, Bui-Nguyen B . A phase II trial of second-line pemetrexed in adults with advanced/metastatic osteosarcoma. Eur J Cancer 2012; 48: 564–570.

    Article  CAS  PubMed  Google Scholar 

  20. Ebb D, Meyers P, Grier H, Bernstein M, Gorlick R, Lipshultz SE et al. Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the children's oncology group. J Clin Oncol 2012; 30: 2545–2551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fouladi M, Laningham F, Wu J, O'Shaughnessy MA, Molina K, Broniscer A et al. Phase I study of everolimus in pediatric patients with refractory solid tumors. J Clin Oncol 2007; 25: 4806–4812.

    Article  CAS  PubMed  Google Scholar 

  22. Kuijjer ML, Hogendoorn PC, Cleton-Jansen AM . Genome-wide analyses on high-grade osteosarcoma: making sense of a genomically most unstable tumor. Int J Cancer 2013; 133: 2512–2521.

    CAS  PubMed  Google Scholar 

  23. Moriceau G, Ory B, Mitrofan L, Riganti C, Blanchard F, Brion R et al. Zoledronic acid potentiates mTOR inhibition and abolishes the resistance of osteosarcoma cells to RAD001 (Everolimus): pivotal role of the prenylation process. Cancer Res 2010; 70: 10329–10339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Strimpakos AS, Karapanagiotou EM, Saif MW, Syrigos KN . The role of mTOR in the management of solid tumors: an overview. Cancer Treat Rev 2009; 35: 148–159.

    Article  CAS  PubMed  Google Scholar 

  25. Grignani G, Palmerini E, Ferraresi V, D'Ambrosio L, Bertulli R, Asaftei SD et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol 2015; 16: 98–107.

    Article  CAS  PubMed  Google Scholar 

  26. Hattinger CM, Stoico G, Michelacci F, Pasello M, Scionti I, Remondini D et al. Mechanisms of gene amplification and evidence of coamplification in drug-resistant human osteosarcoma cell lines. Gene Chromosome Cancer 2009; 48: 289–309.

    Article  CAS  Google Scholar 

  27. Baldini N, Scotlandi K, Barbanti-Brodano G, Manara MC, Maurici D, Bacci G et al. Expression of P-glycoprotein in high-grade osteosarcomas in relation to clinical outcome. N Engl J Med 1995; 333: 1380–1385.

    Article  CAS  PubMed  Google Scholar 

  28. Chan HS, Grogan TM, Haddad G, DeBoer G, Ling V . P-glycoprotein expression: critical determinant in the response to osteosarcoma chemotherapy. J Natl Cancer Inst 1997; 89: 1706–1715.

    Article  CAS  PubMed  Google Scholar 

  29. Pakos EE, Ioannidis JP . The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma. A meta-analysis. Cancer 2003; 98: 581–589.

    Article  CAS  PubMed  Google Scholar 

  30. Serra M, Pasello M, Manara MC, Scotlandi K, Ferrari S, Bertoni F et al. May P-glycoprotein status be used to stratify high-grade osteosarcoma patients? Results from the Italian/Scandinavian Sarcoma Group 1 treatment protocol. Int J Oncol 2006; 29: 1459–1468.

    CAS  PubMed  Google Scholar 

  31. Serra M, Scotlandi K, Reverter-Branchat G, Ferrari S, Manara MC, Benini S et al. Value of P-glycoprotein and clinicopathologic factors as the basis for new treatment strategies in high-grade osteosarcoma of the extremities. J Clin Oncol 2003; 21: 536–542.

    Article  CAS  PubMed  Google Scholar 

  32. Gorlick R, Huvos AG, Heller G, Aledo A, Beardsley GP, Healey JH et al. Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J Clin Oncol 1999; 17: 2781–2788.

    Article  CAS  PubMed  Google Scholar 

  33. Schwartz CL, Gorlick R, Teot L, Krailo M, Chen Z, Goorin A et al. Multiple drug resistance in osteogenic sarcoma: INT0133 from the Children's Oncology Group. J Clin Oncol 2007; 25: 2057–2062.

    Article  PubMed  Google Scholar 

  34. Serra M, Picci P, Ferrari S, Bacci G . Prognostic value of P-glycoprotein in high-grade osteosarcoma. J Clin Oncol 2007; 25: 4858–4860, author reply 4860-4851.

    Article  PubMed  Google Scholar 

  35. Hattinger CM, Reverter-Branchat G, Remondini D, Castellani GC, Benini S, Pasello M et al. Genomic imbalances associated with methotrexate resistance in human osteosarcoma cell lines detected by comparative genomic hybridization-based techniques. Eur J Cell Biol 2003; 82: 483–493.

    Article  CAS  PubMed  Google Scholar 

  36. Scionti I, Michelacci F, Pasello M, Hattinger CM, Alberghini M, Manara MC et al. Clinical impact of the methotrexate resistance-associated genes C-MYC and dihydrofolate reductase (DHFR) in high-grade osteosarcoma. Ann Oncol 2008; 19: 1500–1508.

    Article  CAS  PubMed  Google Scholar 

  37. Serra M, Reverter-Branchat G, Maurici D, Benini S, Shen JN, Chano T et al. Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells. Ann Oncol 2004; 15: 151–160.

    Article  CAS  PubMed  Google Scholar 

  38. Guo W, Healey JH, Meyers PA, Ladanyi M, Huvos AG, Bertino JR et al. Mechanisms of methotrexate resistance in osteosarcoma. Clin Cancer Res 1999; 5: 621–627.

    CAS  PubMed  Google Scholar 

  39. Ifergan I, Meller I, Issakov J, Assaraf YG . Reduced folate carrier protein expression in osteosarcoma: implications for the prediction of tumor chemosensitivity. Cancer 2003; 98: 1958–1966.

    Article  CAS  PubMed  Google Scholar 

  40. Patino-Garcia A, Zalacain M, Marrodan L, San-Julian M, Sierrasesumaga L . Methotrexate in pediatric osteosarcoma: response and toxicity in relation to genetic polymorphisms and dihydrofolate reductase and reduced folate carrier 1 expression. J Pediatr 2009; 154: 688–693.

    Article  CAS  PubMed  Google Scholar 

  41. Gill J, Geller D, Gorlick R . HER-2 involvement in osteosarcoma. Adv Exp Med Biol 2014; 804: 161–177.

    Article  CAS  PubMed  Google Scholar 

  42. Gorlick S, Barkauskas DA, Krailo M, Piperdi S, Sowers R, Gill J et al. HER-2 expression is not prognostic in osteosarcoma; a Children's Oncology Group prospective biology study. Pediatr Blood Cancer 2014; 61: 1558–1564.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep 2014; 7: 104–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Egas-Bejar D, Anderson PM, Agarwal R, Corrales-Medina F, Devarajan E, Huh WW et al. Theranostic profiling for actionable aberrations in advanced high risk osteosarcoma with aggressive biology reveals high molecular diversity: the Human Fingerprint Hypothesis. Oncoscience 2014; 1: 167–179.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Perry JA, Kiezun A, Tonzi P, Van Allen EM, Carter SL, Baca SC et al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc Natl Acad Sci USA 2014; 111: E5564–E5573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou Q, Deng Z, Zhu Y, Long H, Zhang S, Zhao J . mTOR/p70S6K signal transduction pathway contributes to osteosarcoma progression and patients' prognosis. Med Oncol 2010; 27: 1239–1245.

    Article  CAS  PubMed  Google Scholar 

  47. Ochi K, Daigo Y, Katagiri T, Nagayama S, Tsunoda T, Myoui A et al. Prediction of response to neoadjuvant chemotherapy for osteosarcoma by gene-expression profiles. Int J Oncol 2004; 24: 647–655.

    CAS  PubMed  Google Scholar 

  48. Man TK, Chintagumpala M, Visvanathan J, Shen J, Perlaky L, Hicks J et al. Expression profiles of osteosarcoma that can predict response to chemotherapy. Cancer Res 2005; 65: 8142–8150.

    Article  CAS  PubMed  Google Scholar 

  49. Mintz MB, Sowers R, Brown KM, Hilmer SC, Mazza B, Huvos AG et al. An expression signature classifies chemotherapy-resistant pediatric osteosarcoma. Cancer Res 2005; 65: 1748–1754.

    Article  CAS  PubMed  Google Scholar 

  50. Dalla-Torre CA, de Toledo SR, Yoshimoto M, Petrilli AS, Andrade JA, Chilton-MacNeill S et al. Expression of major vault protein gene in osteosarcoma patients. J Orthop Res 2007; 25: 958–963.

    Article  CAS  PubMed  Google Scholar 

  51. Dalla-Torre CA, Yoshimoto M, Lee CH, Joshua AM, de Toledo SR, Petrilli AS et al. Effects of THBS3, SPARC and SPP1 expression on biological behavior and survival in patients with osteosarcoma. BMC Cancer 2006; 6: 237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Davicioni E, Wai DH, Anderson MJ . Diagnostic and prognostic sarcoma signatures. Mol Diagn Ther 2008; 12: 359–374.

    Article  CAS  PubMed  Google Scholar 

  53. Smida J, Baumhoer D, Rosemann M, Walch A, Bielack S, Poremba C et al. Genomic alterations and allelic imbalances are strong prognostic predictors in osteosarcoma. Clin Cancer Res 2010; 16: 4256–4267.

    Article  CAS  PubMed  Google Scholar 

  54. Biason P, Toffoli G . Sarcomas and pharmacogenetics. Pharmacogenomics 2005; 6: 585–601.

    Article  CAS  PubMed  Google Scholar 

  55. Jabeen S, Holmboe L, Alnaes GI, Andersen AM, Hall KS, Kristensen VN . Impact of genetic variants of RFC1, DHFR and MTHFR in osteosarcoma patients treated with high-dose methotrexate. Pharmacogenomics J 2015; 15: 385–390.

    Article  CAS  PubMed  Google Scholar 

  56. Windsor RE, Strauss SJ, Kallis C, Wood NE, Whelan JS . Germline genetic polymorphisms may influence chemotherapy response and disease outcome in osteosarcoma: a pilot study. Cancer 2012; 118: 1856–1867.

    Article  CAS  PubMed  Google Scholar 

  57. Goricar K, Kovac V, Jazbec J, Zakotnik B, Lamovec J, Dolzan V . Influence of the folate pathway and transporter polymorphisms on methotrexate treatment outcome in osteosarcoma. Pharmacogenet Genomics 2014; 24: 514–521.

    Article  CAS  PubMed  Google Scholar 

  58. Hagleitner MM, Coenen MJ, Gelderblom H, Makkinje RR, Vos HI, de Bont ES et al. A first step towards personalized medicine in osteosarcoma: pharmacogenetics as predictive marker of outcome after chemotherapy based treatment. Clin Cancer Res 2015; 21: 3436–3441.

    Article  CAS  PubMed  Google Scholar 

  59. Salinas-Souza C, Petrilli AS, de Toledo SR . Glutathione S-transferase polymorphisms in osteosarcoma patients. Pharmacogenet Genomics 2010; 20: 507–515.

    Article  CAS  PubMed  Google Scholar 

  60. Li JZ, Tian ZQ, Jiang SN, Feng T . Effect of variation of ABCB1 and GSTP1 on osteosarcoma survival after chemotherapy. Genet Mol Res 2014; 13: 3186–3192.

    Article  CAS  PubMed  Google Scholar 

  61. Liu S, Yi Z, Ling M, Shi J, Qiu Y, Yang S . Predictive potential of ABCB1, ABCC3, and GSTP1 gene polymorphisms on osteosarcoma survival after chemotherapy. Tumour Biol 2014; 35: 9897–9904.

    Article  CAS  PubMed  Google Scholar 

  62. Teng JW, Yang ZM, Li J, Xu B . Predictive role of Glutathione S-transferases (GSTs) on the prognosis of osteosarcoma patients treated with chemotherapy. Pak J Med Sci 2013; 29: 1182–1186.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhang SL, Mao NF, Sun JY, Shi ZC, Wang B, Sun YJ . Predictive potential of glutathione S-transferase polymorphisms for prognosis of osteosarcoma patients on chemotherapy. Asian Pac J Cancer Prev 2012; 13: 2705–2709.

    Article  PubMed  Google Scholar 

  64. Goricar K, Kovac V, Jazbec J, Zakotnik B, Lamovec J, Dolzan V . Genetic variability of DNA repair mechanisms and glutathione-S-transferase genes influences treatment outcome in osteosarcoma. Cancer Epidemiol 2015; 39: 182–188.

    Article  PubMed  Google Scholar 

  65. Cao ZH, Yin HP, Jiang N, Yu B . Association between ERCC1 and ERCC2 gene polymorphisms and chemotherapy response and overall survival in osteosarcoma. Genet Mol Res 2015; 14: 10145–10151.

    Article  CAS  PubMed  Google Scholar 

  66. Ji WP, He NB . Investigation on the DNA repaired gene polymorphisms and response to chemotherapy and overall survival of osteosarcoma. Int J Clin Exp Pathol 2015; 8: 894–899.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun Y, Wu Y, Li W, Kong Z, Zou X . Genetic polymorphisms in nucleotide excision repair pathway influences response to chemotherapy and overall survival in osteosarcoma. Int J Clin Exp Pathol 2015; 8: 7905–7912.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang Q, Lv LY, Li BJ, Zhang J, Wei F . Investigation of ERCC1 and ERCC2 gene polymorphisms and response to chemotherapy and overall survival in osteosarcoma. Genet Mol Res 2015; 14: 11235–11241.

    Article  CAS  PubMed  Google Scholar 

  69. Wang MJ, Zhu Y, Guo XJ, Tian ZZ . Genetic variability of genes involved in DNA repair influence treatment outcome in osteosarcoma. Genet Mol Res 2015; 14: 11652–11657.

    Article  CAS  PubMed  Google Scholar 

  70. Caronia D, Patino-Garcia A, Milne RL, Zalacain-Diez M, Pita G, Alonso MR et al. Common variations in ERCC2 are associated with response to cisplatin chemotherapy and clinical outcome in osteosarcoma patients. Pharmacogenomics J 2009; 9: 347–353.

    Article  CAS  PubMed  Google Scholar 

  71. Biason P, Hattinger CM, Innocenti F, Talamini R, Alberghini M, Scotlandi K et al. Nucleotide excision repair gene variants and association with survival in osteosarcoma patients treated with neoadjuvant chemotherapy. Pharmacogenomics J 2012; 12: 476–483.

    Article  CAS  PubMed  Google Scholar 

  72. Yang LM, Li XH, Bao CF . Glutathione S-transferase P1 and DNA polymorphisms influence response to chemotherapy and prognosis of bone tumors. Asian Pac J Cancer Prev 2012; 13: 5883–5886.

    Article  PubMed  Google Scholar 

  73. Liu ZF, Asila AL, Aikenmu K, Zhao J, Meng QC, Fang R . Influence of ERCC2 gene polymorphisms on the treatment outcome of osteosarcoma. Genet Mol Res 2015; 14: 12967–12972.

    Article  CAS  PubMed  Google Scholar 

  74. Bai SB, Chen HX, Bao YX, Luo X, Zhong JJ . Predictive impact of common variations in DNA repair genes on clinical outcome of osteosarcoma. Asian Pac J Cancer Prev 2013; 14: 3677–3680.

    Article  PubMed  Google Scholar 

  75. Sun XH, Hou WG, Zhao HX, Zhao YL, Ma C, Liu Y . Single nucleotide polymorphisms in the NER pathway and clinical outcome of patients with bone malignant tumors. Asian Pac J Cancer Prev 2013; 14: 2049–2052.

    Article  PubMed  Google Scholar 

  76. Caronia D, Patino-Garcia A, Perez-Martinez A, Pita G, Moreno LT, Zalacain-Diez M et al. Effect of ABCB1 and ABCC3 polymorphisms on osteosarcoma survival after chemotherapy: a pharmacogenetic study. PLoS One 2011; 6: e26091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xiaohui S, Aiguo L, Xiaolin G, Ying L, Hongxing Z, Yilei Z . Effect of ABCB1 polymorphism on the clinical outcome of osteosarcoma patients after receiving chemotherapy. Pak J Med Sci 2014; 30: 886–890.

    PubMed  PubMed Central  Google Scholar 

  78. Yang J, Wang ZG, Cai HQ, Li YC, Xu YL . Effect of variation of ABCB1 and ABCC3 genotypes on the survival of bone tumor cases after chemotherapy. Asian Pac J Cancer Prev 2013; 14: 4595–4598.

    Article  PubMed  Google Scholar 

  79. Lo HW, Ali-Osman F . Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr Opin Pharmacol 2007; 7: 367–374.

    Article  CAS  PubMed  Google Scholar 

  80. Yao D, Cai GH, Chen J, Ling R, Wu SX, Li YP . Prognostic value of p53 alterations in human osteosarcoma: a meta analysis. Int J Clin Exp Pathol 2014; 7: 6725–6733.

    PubMed  PubMed Central  Google Scholar 

  81. Pakos EE, Kyzas PA, Ioannidis JP . Prognostic significance of TP53 tumor suppressor gene expression and mutations in human osteosarcoma: a meta-analysis. Clin Cancer Res 2004; 10: 6208–6214.

    Article  CAS  PubMed  Google Scholar 

  82. Jiang L, Tao C, He A . Prognostic significance of p53 expression in malignant bone tumors: a meta-analysis. Tumour Biol 2013; 34: 1037–1043.

    Article  CAS  PubMed  Google Scholar 

  83. Grochola LF, Zeron-Medina J, Meriaux S, Bond GL . Single-nucleotide polymorphisms in the p53 signaling pathway. Cold Spring Harb Perspect Biol 2010; 2: a001032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ito M, Barys L, O'Reilly T, Young S, Gorbatcheva B, Monahan J et al. Comprehensive mapping of p53 pathway alterations reveals an apparent role for both SNP309 and MDM2 amplification in sarcomagenesis. Clin Cancer Res 2011; 17: 416–426.

    Article  CAS  PubMed  Google Scholar 

  85. Mirabello L, Yeager M, Mai PL, Gastier-Foster JM, Gorlick R, Khanna C et al. Germline TP53 variants and susceptibility to osteosarcoma. J Natl Cancer Inst 2015; 107: djv101.

  86. Ognjanovic S, Olivier M, Bergemann TL, Hainaut P . Sarcomas in TP53 germline mutation carriers: a review of the IARC TP53 database. Cancer 2012; 118: 1387–1396.

    Article  CAS  PubMed  Google Scholar 

  87. Toffoli G, Biason P, Russo A, De Mattia E, Cecchin E, Hattinger CM et al. Effect of TP53 Arg72Pro and MDM2 SNP309 polymorphisms on the risk of high-grade osteosarcoma development and survival. Clin Cancer Res 2009; 15: 3550–3556.

    Article  CAS  PubMed  Google Scholar 

  88. Dumont P, Leu JI, Della Pietra AC 3rd, George DL, Murphy M . The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 2003; 33: 357–365.

    Article  CAS  PubMed  Google Scholar 

  89. Ohnstad HO, Castro R, Sun J, Heintz KM, Vassilev LT, Bjerkehagen B et al. Correlation of TP53 and MDM2 genotypes with response to therapy in sarcoma. Cancer 2013; 119: 1013–1022.

    Article  CAS  PubMed  Google Scholar 

  90. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T . Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007; 39: 673–677.

    Article  CAS  PubMed  Google Scholar 

  91. Weng Y, Chen Y, Chen J, Liu Y, Bao T . Common genetic variants in microRNA processing machinery genes are associated with risk and survival in patients with osteosarcoma. Mol Genet Genomics 2015; 291: 511.

    Article  CAS  Google Scholar 

  92. Kager L, Diakos C, Bielack S . Can pharmacogenomics help to improve therapy in patients with high-grade osteosarcoma? Expert Opin Drug Metab Toxicol 2015; 11: 1025–1028.

    Article  CAS  PubMed  Google Scholar 

  93. Pasello M, Michelacci F, Scionti I, Hattinger CM, Zuntini M, Caccuri AM et al. Overcoming glutathione S-transferase P1-related cisplatin resistance in osteosarcoma. Cancer Res 2008; 68: 6661–6668.

    Article  CAS  PubMed  Google Scholar 

  94. Hattinger CM, Michelacci F, Sella F, Magagnoli G, Benini S, Gambarotti M et al. Excision repair cross-complementation group 1 protein expression predicts survival in patients with high-grade, non-metastatic osteosarcoma treated with neoadjuvant chemotherapy. Histopathology 2015; 67: 338–347.

    Article  PubMed  Google Scholar 

  95. Barakat K, Gajewski M, Tuszynski JA . DNA repair inhibitors: the next major step to improve cancer therapy. Curr Top Med Chem 2012; 12: 1376–1390.

    Article  CAS  PubMed  Google Scholar 

  96. Cobo M, Isla D, Massuti B, Montes A, Sanchez JM, Provencio M et al. Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer. J Clin Oncol 2007; 25: 2747–2754.

    Article  CAS  PubMed  Google Scholar 

  97. Reynolds C, Obasaju C, Schell MJ, Li X, Zheng Z, Boulware D et al. Randomized phase III trial of gemcitabine-based chemotherapy with in situ RRM1 and ERCC1 protein levels for response prediction in non-small-cell lung cancer. J Clin Oncol 2009; 27: 5808–5815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' studies and unpublished observations cited in this manuscript were supported by grants from the Italian Association for Cancer Research (Associazione Italiana per la Ricerca sul Cancro, A.I.R.C.; grants to Massimo Serra) and Istituto Ortopedico Rizzoli (5x mille contributions to the Rizzoli Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Serra.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serra, M., Hattinger, C. The pharmacogenomics of osteosarcoma. Pharmacogenomics J 17, 11–20 (2017). https://doi.org/10.1038/tpj.2016.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2016.45

This article is cited by

Search

Quick links