Hydrogen fuel

Latest Research and Reviews

News and Comment

  • News and Views |

    Ammonia holds promise as a clean energy carrier, but its synthesis requires high pressures and large production scales that are ill-matched to renewable, decentralized energy production. Now, researchers use metal imides to mediate ammonia production in a chemical looping process that operates under mild conditions.

    • Götz Veser
    Nature Energy 3, 1025-1026
  • News and Views |

    Semi-artificial photosynthesis offers advantages over purely natural or synthetic routes to producing chemicals from solar energy, but devices based on it have remained elusive. Now, researchers couple a dye-sensitized photoanode with natural components to generate H2 photoelectrochemically from water without additional bias.

    • Paul W. King
    Nature Energy 3, 921-922
  • News and Views |

    Development of an earth-abundant and inexpensive copper-based catalyst is desirable for CO2 hydrogenation. Now, the combined application of a stable copper hydride and a Lewis pair is shown to effect activation of CO2 as well as heterolysis of H2, achieving significant turnover numbers.

    • Yoshihito Kayaki
    •  & Ryo Watari
    Nature Catalysis 1, 739-740
  • News and Views |

    Photocatalytic water splitting is a route to clean H2, but approaches based on hybrid semiconductor–metal nanoparticles often rely on sacrificial reagents to complete the oxidation half of the overall reaction. New research uses CdS nanocrystals modified with metallic and molecular co-catalysts to simultaneously produce H2 and O2 from water using visible light.

    • Uri Banin
    •  & Yuval Ben-Shahar
    Nature Energy 3, 824-825
  • News and Views |

    Various approaches have been adopted to enhance the performance of alkaline water electrolysers, such as improving catalyst efficiency or increasing operating temperatures. Now, magnetic hyperthermia is demonstrated as another potential route to enhance overall water splitting catalytic activity.

    • Bora Seo
    •  & Sang Hoon Joo
    Nature Energy 3, 451-452