Frequency combs articles within Nature Physics

Featured

  • Article |

    Mode locking, which is a common technique to produce short laser pulses, is demonstrated in a topological laser.

    • Christian R. Leefmans
    • , Midya Parto
    •  & Alireza Marandi
  • News & Views |

    Light propagating in the topological edge channel of an array of ring resonators is predicted to generate nested frequency combs: like a Matryoshka doll containing a set of smaller dolls, each ‘tooth’ of the comb comprises another frequency comb.

    • Vittorio Peano
  • Article |

    Optical frequency combs are a key technology in precision time keeping, spectroscopy and metrology. A theoretical proposal shows that introducing topological principles into their design makes on-chip combs more efficient and robust against fabrication defects.

    • Sunil Mittal
    • , Gregory Moille
    •  & Mohammad Hafezi
  • News & Views |

    Among the many reasons a signal may deviate from perfect periodicity, quantum-limited jitter is arguably the most fundamental. A clever experiment has now stripped away technical noise to unveil quantum-limited jitter of ultrafast soliton frequency combs.

    • Miro Erkintalo
  • Letter |

    Quantum jitter fundamentally limits the performance of microresonator frequency combs. The timing jitter of the solitons that generate the comb spectra is analysed, reaching the quantum limit and establishing fundamental limits for soliton microcombs.

    • Chengying Bao
    • , Myoung-Gyun Suh
    •  & Kerry J. Vahala
  • Measure for Measure |

    The tool of choice to measure optical frequencies with extremely high precision is the optical frequency comb. Camille-Sophie Brès explains what makes this technique so powerful.

    • Camille-Sophie Brès
  • News & Views |

    A combination of two Nobel ideas circumvents the trade-off between power and accuracy in ultraviolet spectroscopy.

    • Scott A. Diddams
  • Letter |

    Frequency combs provide a broad series of well-calibrated spectral lines for highly precise metrology and spectroscopy, but this usually involves a trade-off between power and accuracy. A comb created by adjusting the time delay between two optical pulses now enables both. This so-called Ramsey comb could probe fundamental problems such as determining the size of the proton.

    • Jonas Morgenweg
    • , Itan Barmes
    •  & Kjeld S. E. Eikema