Biosensors articles within Nature Chemistry

Featured

  • Article |

    Methods to detect and identify bacteria typically rely on enrichment steps such as bacterial culture and nucleic acid amplification. Now, an assay for detecting bacteria based on a two-channel electrical chip that combines electroactive DNAzymes with an electrochemical readout, has been developed. This assay enables reagentless and culture-free detection of bacteria in clinical samples.

    • Richa Pandey
    • , Dingran Chang
    •  & Leyla Soleymani
  • News & Views |

    The continuous monitoring of proteins is a current challenge in medical diagnostics. A new electrochemical approach aiming to address this has been described. The method uses antibodies as a recognition element to achieve the real-time measurement of proteins in saliva in the mouth.

    • Kevin J. Cash
    •  & Kevin W. Plaxco
  • Article |

    A reagentless method for detecting analytes based on the motion of an inverted molecular pendulum has now been developed. The sensor is capable of detecting important physiological markers of stress, allergy, cardiovascular health, inflammation and cancer and works in blood, saliva, urine, tears and sweat. The sensor is also capable of collecting data in living animals.

    • Jagotamoy Das
    • , Surath Gomis
    •  & Shana O. Kelley
  • Meeting Report |

    The confined geometry of nanopores enables a wealth of chemistry and analysis to be conducted at the single-molecule scale. Yi-Lun Ying, Aleksandar P. Ivanov and Vincent Tabard-Cossa report on recent developments discussed at the 2020 Nanopore Electrochemistry Meeting.

    • Yi-Lun Ying
    • , Aleksandar P. Ivanov
    •  & Vincent Tabard-Cossa
  • News & Views |

    The tumour microenvironment has a specific enzymatic fingerprint, which provides opportunities for cancer therapy. Now, two studies show how this unique chemical environment can be used to produce reporter molecules or nanoclusters within the tumour that can subsequently be identified in urine or breath, enabling cancer detection and monitoring.

    • Alexander N. Zelikin
  • Article |

    DNA is capable of self-assembling into a wide range of user-defined structures and so can be used as a scaffold to arrange binding motifs with nanometre precision. Now, DNA has been used to accurately display aptamers that fit the repeated epitope pattern of a dengue viral antigen to produce a nanostructure that can be a potent viral inhibitor or a fluorescent sensor.

    • Paul S. Kwon
    • , Shaokang Ren
    •  & Xing Wang
  • Article |

    Gene expression profiling remains cost-prohibitive and challenging to implement in a clinical setting. Now, a molecular computation strategy for classifying complex gene expression signatures has been developed. Classification occurs through a series of molecular interactions between RNA inputs and engineered DNA probes designed to implement a relevant linear classification model.

    • Randolph Lopez
    • , Ruofan Wang
    •  & Georg Seelig
  • Article |

    The assembly of transmembrane barrels formed from short synthetic peptides has not been previously demonstrated. Now, a transmembrane pore has been fabricated via the self-assembly of peptides. The 35-amino-acid α-helical peptides are based on the C-terminal D4 domain of the Escherichia coli polysaccharide transporter Wza.

    • Kozhinjampara R. Mahendran
    • , Ai Niitsu
    •  & Hagan Bayley
  • News & Views |

    An electrochemical clamp assay that enables the rapid and sensitive detection of nucleic acids containing single base mutations has now been developed. It has been shown to differentiate between cancer patient samples featuring a specific mutation, and controls from healthy donors or other cancer patients, all directly in unprocessed serum.

    • Irina A. Gorodetskaya
    •  & Alon A. Gorodetsky
  • Article |

    Surface-enhanced resonant Raman optical activity (SERROA) reveals the through-space transfer of chirality from biomolecules to achiral benzotriazole dye-conjugated nanotags. The chiroptical responses generated by the stereoisomers of ribose and tryptophan establish this as the basis for a stereoselective nanosensor platform.

    • Saeideh Ostovar pour
    • , Louise Rocks
    •  & Ewan W. Blanch