Biogeochemistry articles within Nature Communications

Featured

  • Article
    | Open Access

    The North Atlantic biological pump has the most intense absorption of C globally, but how this will fare in light of climate changes (especially sea-ice melting) is poorly understood. Here the authors present a 24-month continuous time series of physical, chemical, and biological observations in the Fram Strait.

    • Wilken-Jon von Appen
    • , Anya M. Waite
    •  & Antje Boetius
  • Article
    | Open Access

    During permafrost thaw, nitrogen can be released as the greenhouse gas nitrous oxide, but the magnitude of this flux is unknown. Nitrous oxide emissions from ice-rich permafrost deposits are reported here, showing that emissions increase after thawing and stabilization and could represent an unappreciated positive climate feedback in the Arctic.

    • M. E. Marushchak
    • , J. Kerttula
    •  & C. Biasi
  • Article
    | Open Access

    Hydrothermal vents are biogeochemically important, but their contribution to the carbon cycle is poorly constrained. Here the authors build a biogeochemical model that estimates autotrophic and heterotrophic production rates of microbial communities within hydrothermal plumes along mid-ocean ridges.

    • Cécile Cathalot
    • , Erwan G. Roussel
    •  & Pierre-Marie Sarradin
  • Article
    | Open Access

    The extent to which temperature controls soil carbon storage remains highly uncertain. Here, the authors show that, globally, soil carbon stocks decline strongly with temperature, but the effect is much greater in coarse-textured soils with limited organic matter stabilisation capacities, than in fine-textured soils.

    • Iain P. Hartley
    • , Tim C. Hill
    •  & Gustaf Hugelius
  • Article
    | Open Access

    Defoliating insects disrupt nutrient cycling of boreal catchments by redistributing carbon and nitrogen from forests to lakes. The resulting shift in lake biogeochemistry exceeds broader between-year trends observed across the boreal and north temperate region.

    • Samuel G. Woodman
    • , Sacha Khoury
    •  & Andrew J. Tanentzap
  • Article
    | Open Access

    Archaea in marine sediment control the transfer of methane to the ocean, but microbial dynamics in these environments are poorly understood. Here the authors investigate marine sediments in the high Arctic, showing how methane influx quickly increases abundances of methane-consuming archaea and decreases total microbial community diversity.

    • Scott A. Klasek
    • , Wei-Li Hong
    •  & Frederick S. Colwell
  • Article
    | Open Access

    We combine data from global forest resource assessments with a forest model to quantify the role of major drivers of net carbon fluxes from global forest biomass at national resolution between 1990 and 2020. We find that growth-condition changes, more than reforestation, counteracted forest biomass carbon emissions mostly driven by deforestation.

    • Julia Le Noë
    • , Karl-Heinz Erb
    •  & Simone Gingrich
  • Article
    | Open Access

    Iron-sulfur (FeS) proteins are involved in electron transfer and CO2 fixation. Here, the authors show that FeS clusters can form spontaneously in the presence of the amino acid cysteine, in conditions similar those expected in Hadean alkaline hydrothermal vents, suggesting a plausible mechanism of their emergence at the origin of life.

    • Sean F. Jordan
    • , Ioannis Ioannou
    •  & Nick Lane
  • Article
    | Open Access

    The Antarctic ozone hole has had far-reaching impacts, but effects on geochemical cycles in polar regions is still unknown. Iodine records from the interior of Antarctica provide evidence for human alteration of the natural geochemical cycle of this essential element.

    • Andrea Spolaor
    • , François Burgay
    •  & Alfonso Saiz-Lopez
  • Article
    | Open Access

    Arctic lakes are strong and increasing sources of atmospheric methane, but extreme conditions and limited observations hinder robust understanding. Here the authors show that microbes in the middle of Arctic lakes have elevated methane producing potential, and are poised to release even more in the future.

    • Joanne B. Emerson
    • , Ruth K. Varner
    •  & Virginia I. Rich
  • Article
    | Open Access

    Whether rewetting leads to effective restoration of drained peatlands is unclear. Here the authors analyse a large number of near-natural and rewetted fen peatland sites in Europe, finding persistent differences in plant community composition and ecosystem functioning, and higher variance in the restored sites.

    • J. Kreyling
    • , F. Tanneberger
    •  & G. Jurasinski
  • Article
    | Open Access

    Nowhere is biomass burning more abundant than on the African continent, but the biogeochemical impacts on forests are poorly understood. Here the authors show that biomass burning leads to high phosphorus deposition in the Congo basin, which scales with forest age as a result of increasing canopy complexity.

    • Marijn Bauters
    • , Travis W. Drake
    •  & Pascal Boeckx
  • Article
    | Open Access

    Over the past century, the Western Antarctic Peninsula has experienced rapid warming and a substantial loss of sea ice with important implications for plankton biodiversity and carbon cycling. Using a 5-year DNA metabarcoding dataset, this study assesses how interannual variability in sea-ice conditions impacts biodiversity and biological carbon fluxes in this region.

    • Yajuan Lin
    • , Carly Moreno
    •  & Nicolas Cassar
  • Article
    | Open Access

    N2 fixation was key to the expansion of life on Earth, but which organisms fixed N2 and if Mo-nitrogenase was functional in the low Mo early ocean is unknown. Here, the authors show that purple sulfur bacteria fix N2 using Mo-nitrogenase in a Proterozoic ocean analogue, despite low Mo conditions.

    • Miriam Philippi
    • , Katharina Kitzinger
    •  & Marcel M. M. Kuypers
  • Article
    | Open Access

    Here the authors show that 2-aminoethylphosphonate (2AEP) mineralisation is widespread in the global ocean, operating independently of exogenous inorganic phosphate concentration. They propose 2AEP may be a major route for the regeneration of phosphate required to support marine primary production.

    • Andrew R. J. Murphy
    • , David J. Scanlan
    •  & Ian D. E. A. Lidbury
  • Article
    | Open Access

    Plant and soil C:N:P ratios are critical to ecosystem functioning, but it remains uncertain how plant diversity affects terrestrial C:N:P. In this meta-analysis of 169 studies, the authors find that plant mixtures can balance plant and soil C:N:P ratios according to background soil C:N:P.

    • Xinli Chen
    •  & Han Y. H. Chen
  • Article
    | Open Access

    Relationships between biodiversity and phosphorus cycling and the underlying processes are complex. Here the authors analyse a biodiversity manipulation experiment and an agricultural management gradient to show how plant and mycorrhizal fungal diversity promote phosphorus exploitation.

    • Yvonne Oelmann
    • , Markus Lange
    •  & Wolfgang Wilcke
  • Article
    | Open Access

    To explore the importance of local vs. global sulfur-cycle controls on variations in pyrite sulfur isotopes, the authors couple carbon-nitrogen-sulfur concentrations and stable isotopes of sediments from the Peruvian oxygen minimum zone, identifying a major role for the local organic carbon loading.

    • Virgil Pasquier
    • , David A. Fike
    •  & Itay Halevy
  • Article
    | Open Access

    The deep North Pacific is the end of the road for global ocean circulation, but the circulation patterns and ventilation are poorly understood. Here the authors show that diffusive transports both along and across density layers play a leading role in returning 1,400 year old water to the surface.

    • Mark Holzer
    • , Tim DeVries
    •  & Casimir de Lavergne
  • Article
    | Open Access

    Advances in omics approaches could enable quantitative predictions of microbial functional composition. Here the authors re-analyze 885 metagenome-assembled genomes from Tara Oceans, and use a network approach to quantify protein functional clusters and explore their biogeography.

    • Emile Faure
    • , Sakina-Dorothée Ayata
    •  & Lucie Bittner
  • Article
    | Open Access

    Nitrogen fixation by diazotrophs is critical for marine primary production. Using Tara Oceans datasets, this study combines a quantitative image analysis pipeline with metagenomic mining to provide an improved global overview of diazotroph abundance, diversity and distribution.

    • Juan José Pierella Karlusich
    • , Eric Pelletier
    •  & Rachel A. Foster
  • Article
    | Open Access

    The fate of soil carbon is controlled by plant inputs, microbial activity, and the soil matrix. Here the authors extend the notion of plant-derived particulate organic matter, from an easily available and labile carbon substrate, to a functional component at which persistence of soil carbon is determined.

    • Kristina Witzgall
    • , Alix Vidal
    •  & Carsten W. Mueller
  • Article
    | Open Access

    Warmer and drier conditions are increasing the frequency of forest fires, which in turn produce pyrogenic carbon. Here the authors show that accumulation of pyrogenic carbon can suppress post-fire methane production in northern peatlands and can effectively buffer fire-derived greenhouse gas emissions.

    • Tianran Sun
    • , Juan J. L. Guzman
    •  & Largus T. Angenent
  • Article
    | Open Access

    N2 fixation by heterotrophic bacteria has recently been found to take place on sinking marine particles, but an understanding of its regulation and importance is lacking. Here the authors develop a trait-based model for this N2 fixation, finding that this once overlooked process could have global importance.

    • Subhendu Chakraborty
    • , Ken H. Andersen
    •  & Lasse Riemann
  • Article
    | Open Access

    Microbes that colonise ice sheet surfaces are important to the carbon cycle, but their biomass and transport remains unquantified. Here, the authors reveal substantial microbial carbon fluxes across Greenland’s ice surface, in quantities that may sustain subglacial heterotrophs and fuel methanogenesis.

    • T. D. L. Irvine-Fynn
    • , A. Edwards
    •  & A. Hubbard
  • Article
    | Open Access

    “Earth degassing is a critical carbon source, but its contribution to Cenozoic atmospheric CO2 variations is not well known. Here, the authors analyse CO2 fluxes on the Tibetan Plateau and suggest that the India-Asia collision was the primary driver of changes in atmospheric CO2 over the past 65 Ma.”

    • Zhengfu Guo
    • , Marjorie Wilson
    •  & Jiaqi Liu
  • Article
    | Open Access

    Conserving mangrove biodiversity has numerous co-benefits, including climate change-mitigation. Here the authors demonstrate that blue carbon storage in mangroves can be best sustained by combining site-specific dominant species with other species with contrasting functional traits.

    • Md Mizanur Rahman
    • , Martin Zimmer
    •  & Ming Xu
  • Article
    | Open Access

    Some bacteriophage encode auxiliary metabolic genes (AMGs) that impact host metabolism and biogeochemical cycling during infection. Here the authors identify hundreds of AMGs in environmental phage encoding sulfur oxidation genes and use their global distribution to infer phage-mediated biogeochemical impacts.

    • Kristopher Kieft
    • , Zhichao Zhou
    •  & Karthik Anantharaman
  • Article
    | Open Access

    Primary productivity in the oligotrophic ocean sustains Earth’s ecosystems, but nutrient concentrations are vanishingly low. Here the authors measure nanomolar macronutrient concentrations in the North Pacific and find that net community production is sustained through high rates of phosphorus recycling.

    • Fuminori Hashihama
    • , Ichiro Yasuda
    •  & Masao Ishii
  • Article
    | Open Access

    The fate of soil carbon depends on microbial processes, but whether different microbial taxa have individualistic effects on carbon fluxes is unknown. Here the authors use 16 S amplicon sequencing and stable isotopes to show how taxonomic differences influence bacterial respiration and carbon cycling across four ecosystems.

    • Bram W. Stone
    • , Junhui Li
    •  & Bruce A. Hungate
  • Article
    | Open Access

    The middle of the Gulf of Mexico is stratified and highly oligotrophic, yet there are anomalously high fluxes of sinking particulate matter from the euphotic zone. Here the authors show that lateral advection of organic matter supports nitrogen export in the Gulf of Mexico’s open ocean.

    • Thomas B. Kelly
    • , Angela N. Knapp
    •  & Michael R. Stukel
  • Article
    | Open Access

    Up to 40% of the ocean’s fixed nitrogen is lost in oxygen minimum zones (OMZs) by anammox, but despite the importance of this process, nitrogen loss patterns in OMZs are difficult to predict. Here the authors show that ammonium release from small particles is a major control of anammox in the Peruvian OMZ.

    • Clarissa Karthäuser
    • , Soeren Ahmerkamp
    •  & Marcel M. M. Kuypers
  • Article
    | Open Access

    Earth-system sensitivity (ESS) describes the long-term temperature response for a given change in atmospheric CO2 and, as such, is a crucial parameter to assess future climate change. Here, the authors use a Bayesian model with data from the last 420 Myrs to reduce uncertainties and estimate ESS to be around 3.4 °C.

    • Tony E. Wong
    • , Ying Cui
    •  & Klaus Keller
  • Article
    | Open Access

    Mercury is a neurotoxin and pollutant with enhanced emissions from anthropogenic activities. Here, the authors develop a global emissions, transport, and human risk model and find substantial future losses in revenue and public health if emission reductions proposed by the Minamata Convention are delayed.

    • Yanxu Zhang
    • , Zhengcheng Song
    •  & Ping Li
  • Article
    | Open Access

    The macroalgae Sargassum has grown for centuries in the oligotrophic North Atlantic supported by natural nutrient sources and cycling. Here the authors show that changes in tissue nutrient contents since the 1980s reflect global anthropogenic nitrogen enrichment, causing blooms in the wider Atlantic basin.

    • B. E. Lapointe
    • , R. A. Brewton
    •  & P. L. Morton
  • Article
    | Open Access

    A large fraction of ice sheet discharge enters the ocean subsurface from underneath large floating ice-tongues. Here the authors show that associated nutrient export may be governed by shelf circulation and, especially for Fe, particle-dissolved phase exchanges, which is largely independent from freshwater Fe content.

    • Stephan Krisch
    • , Mark James Hopwood
    •  & Eric Pieter Achterberg
  • Article
    | Open Access

    Expanded phosphorus availability possibly triggered a marine bioproduction boom after 2.3 billion years ago, but its delivery mechanisms remain unclear. Here we propose a kaolinite shuttle which efficiently adsorbs phosphorus in continental weathering settings and releases it under marine conditions.

    • Weiduo Hao
    • , Kaarel Mänd
    •  & Kurt O. Konhauser