Automation articles within Nature Chemistry

Featured

  • Article
    | Open Access

    Late-stage functionalization of complex drug molecules is challenging. To address this problem, a discovery platform based on geometric deep learning and high-throughput experimentation was developed. The computational model predicts binary reaction outcome, reaction yield and regioselectivity with low error margins, enabling the functionalization of complex molecules without de novo synthesis.

    • David F. Nippa
    • , Kenneth Atz
    •  & Gisbert Schneider
  • Article |

    Automated systems, nowadays more commonly used in laboratory settings, are typically fixed to a narrow set of reactions and used within a complex laboratory environment. Now, a portable platform has been developed for the on-demand and on-site multistep synthesis of organic molecules, oligonucleotides and oligopeptides mapped into reactionware systems.

    • J. Sebastián Manzano
    • , Wenduan Hou
    •  & Leroy Cronin
  • News & Views |

    Small-molecule drug discovery and development is limited by the ability of chemists to readily synthesize and purify new compounds with suitable chemical diversity. Now, a new twist on solid-phase chemical synthesis has enabled rapid and simplified synthesis of pharmaceutically relevant small molecules.

    • Mark S. Kerr
    •  & Kevin P. Cole
  • Article |

    Although strategies for the automated assembly of compounds of pharmaceutical relevance is a growing field of research, the synthesis of small-molecule pharmacophores remains a predominantly manual process. Now, an automated six-step synthesis of prexasertib is achieved by multistep solid-phase chemistry in a continuous-flow fashion using a chemical recipe file that enables automated scaffold modification through both early and late-stage diversification.

    • Chenguang Liu
    • , Jiaxun Xie
    •  & Jie Wu
  • Article |

    Automated synthesis technologies are often highly specialized, focusing only on a narrow set of reaction classes. Now, solid-phase peptide synthesis, iterative Suzuki–Miyaura cross-coupling and diazirine chemistry have all been automated using the same universal platform architecture. A convergent 12-step synthesis demonstrates the utility of the reported Chemputer system.

    • Davide Angelone
    • , Alexander J. S. Hammer
    •  & Leroy Cronin
  • Meeting Report |

    The use of automation for chemical research and reaction discovery has seen significant advances in recent years, but there are still problems that need to be solved. Ella M. Gale and Derek J. Durand discuss limitations in the field and how researchers are working to address these issues.

    • Ella M. Gale
    •  & Derek J. Durand
  • Meeting Report |

    Synthetic organic chemistry is increasingly automated, data rich and intelligent. At the Automated Synthesis Forum, industry and academia showcased their recent progress towards this augmented future.

    • David M. Heard
    •  & Alastair J. J. Lennox
  • News & Views |

    Enzymatic approaches to synthesize oligosaccharides offer an alternative to chemical syntheses for the production of homogeneous glycans; however, enzyme-based routes typically require lengthy processes. Now, the design of a water-soluble affinity tag has enabled the automation of multistep enzymatic syntheses of mammalian oligosaccharides.

    • Nicola L. B. Pohl
  • Commentary |

    Developing cleaner chemical processes often involves sophisticated flow-chemistry equipment that is not available in many economically developing countries. For reactions where it is the data that are important rather than the physical product, the networking of chemists across the internet to allow remote experimentation offers a viable solution to this problem.

    • Ryan A. Skilton
    • , Richard A. Bourne
    •  & Martyn Poliakoff
  • News & Views |

    Creating chemical systems that can model living systems is far from easy. However, the evolution of oil droplets in water through the application of artificial selective pressure to produce droplets with dramatically different — yet specific — behaviours, is an encouraging step in this direction.

    • Andrew J. Bissette
    •  & Stephen P. Fletcher