Astrophysical plasmas articles within Nature Physics

Featured

  • News & Views |

    Particles in space can be accelerated to high energy, the distribution of which follows a power law. This has now been reproduced in laboratory experiments mimicking astrophysical scenarios, which helps to understand the underlying mechanisms.

    • Giovanni Lapenta
  • Article |

    Laboratory experiments reveal the underlying mechanism of turbulent reconnection, including electron acceleration. These findings are directly relevant for studies of flares in the solar corona.

    • Yongli Ping
    • , Jiayong Zhong
    •  & Jie Zhang
  • Letter |

    In laser–plasma experiments complemented by simulations, electron acceleration is observed in turbulent collisionless shocks. This work clarifies the pre-acceleration to relativistic energies required for the onset of diffusive shock acceleration.

    • F. Fiuza
    • , G. F. Swadling
    •  & H.-S. Park
  • Letter |

    Magnetic reconnection in the near-Earth magnetotail is observed to power a space storm, although suppression of magnetic reconnection caused by the Earth’s magnetic dipole was expected close to Earth.

    • Vassilis Angelopoulos
    • , Anton Artemyev
    •  & Yukinaga Miyashita
  • Letter |

    Electrons can be accelerated by astrophysical shocks if they are sufficiently fast to start with. As laboratory laser-produced shock experiments reveal, this can be achieved by lower-hybrid waves generated by a shock-reflected ion instability.

    • A. Rigby
    • , F. Cruz
    •  & G. Gregori
  • Letter |

    The first observational evidence of plasma heating through the dissipation of Alfvén-wave energy in tenuous regions of solar magnetism provides fresh insight into heating processes in the solar atmosphere, and in other magnetohydrodynamic systems.

    • Samuel D. T. Grant
    • , David B. Jess
    •  & Rebecca L. Hewitt
  • News & Views |

    Direct satellite observations of energy transfer between large and small space plasma scales contribute to our understanding of how matter in the Universe gets hot.

    • Alessandro Retinò
  • Article |

    Substorms in the Earth’s magnetosphere lead to bright aurorae, releasing energy into the surrounding ionosphere. Ground- and space-based observations now reveal how that energy is dissipated and controlled by strong electric currents.

    • E. V. Panov
    • , W. Baumjohann
    •  & M. V. Kubyshkina
  • Article |

    Processes in (space) plasmas occur on different levels — fluid, ion and electron. Now, from satellite data and simulations, an energy-transfer mechanism between the fluid and ion scales is reported: fluid velocity shear is converted into ion heating.

    • T. W. Moore
    • , K. Nykyri
    •  & A. P. Dimmock
  • Commentary |

    Fusion research is driven by the applied goal of energy production from fusion reactions. There is, however, a wealth of fundamental physics to be discovered and studied along the way. This Commentary discusses selected developments in diagnostics and present-day research topics in high-temperature plasma physics.

    • Alexander V. Melnikov
  • News & Views |

    Two observational studies published in Nature Physics provided early evidence for the mechanisms of magnetic reconnection in three dimensions and in a turbulent medium.

    • Ellen Zweibel
  • News & Views |

    The successful formation of self-generated magnetic fields in the lab using large-scale, high-power lasers opens the door to a better understanding of some of the most extreme astrophysical processes taking place in the Universe.

    • Francisco Suzuki-Vidal
  • News & Views |

    High-cadence images link the phenomena required for particle acceleration at the Sun. A plasmoid-driven shock wave accelerates electrons in intermittent bursts.

    • Edward W. Cliver
  • Article |

    A combination of measurements from the Solar Dynamics Observatory and radiospectroscopy data from the Nançay Radioheliograph now details the mechanism that connects coronal mass ejections from the sun and the acceleration of particles to relativistic speeds. A spatial and temporal correlation between a coronal ‘bright front’ and radio emissions associated with electron acceleration demonstrates the fundamental relationship between the two.

    • Eoin P. Carley
    • , David M. Long
    •  & Peter T. Gallagher
  • News & Views |

    Observations from NASA's Solar Dynamic Observatory provide compelling evidence for the central role of magnetic reconnection in solar flares.

    • Terry G. Forbes
  • Letter |

    Extreme ultraviolet and X-ray imaging of a solar flare with unprecedented clarity now provide visual evidence that magnetic reconnection plays a fundamental role in generating solar flares. The Atmospheric Imaging Assembly on NASA’s Solar Dynamics Observatory is able to observe a ’cold’ plasma moving into the reconnection point and the simultaneous acceleration of a hot-flare-heated plasma away from it.

    • Yang Su
    • , Astrid M. Veronig
    •  & Weiqun Gan
  • Letter |

    Magnetic reconnection in the Earth's magnetosphere accelerates electrons. And yet energetic electrons are not created during reconnection in the solar wind. Observations from the Cluster spacecraft now suggest that electron acceleration is caused by repeated bursts of plasma flow, which only occur in situations where the magnetic reconnection is unsteady.

    • H. S. Fu
    • , Yu. V. Khotyaintsev
    •  & M. André
  • News & Views |

    A sophisticated model of the birth and early evolution of coronal mass ejections could lead to better forecast of the 'weather' in space.

    • Stefaan Poedts
  • Article |

    Sudden bursts of charged particles emitted from the surface of the Sun can disrupt the satellites orbiting Earth. However, the mechanisms that drive these so-called coronal mass ejections remain unclear. An advanced computer model now establishes a link between the onset of an ejection and the emergence of magnetic flux into the solar atmosphere.

    • Ilia I. Roussev
    • , Klaus Galsgaard
    •  & Jun Lin
  • Research Highlights |

    • Iulia Georgescu
  • News & Views |

    Geomagnetic storms driven by the solar wind can cause the flux of high-energy electrons in the Earth's Van Allen belts to rapidly fall. Analysis of data obtained during one such event from multiple spacecraft located at different altitudes in the magnetosphere reveals just where these electrons go.

    • Mary K. Hudson
  • Letter |

    Magnetic reconnection is a process by which the field lines of a magnetized plasma undergo dramatic realignment, releasing large amounts of energy. Large-scale simulations of reconnection events in the Earth’s magnetosphere suggest that this process takes place over much greater distances than previously expected.

    • J. Egedal
    • , W. Daughton
    •  & A. Le