Astrophysical plasmas articles within Nature Communications

Featured

  • Article
    | Open Access

    A fundamental feature of planetary magnetospheres is internal convection induced by surrounding solar wind. Here, authors offer insights into the interplay among solar wind, magnetosphere, and ionosphere, and evidence a dayside-driven convection pattern linked to magnetic-field-aligned currents.

    • Lei Dai
    • , Minghui Zhu
    •  & Graziella Branduardi-Raymont
  • Article
    | Open Access

    Jets have been found in Earth’s magnetosheath for two decades and, more recently, also in Mars. Yet, their universal existence in planetary magnetosheath remains an open question. Here, authors report the presence of anti-sunward and sunward jets at Jupiter and compare them to Earth and Mars.

    • Yufei Zhou
    • , Savvas Raptis
    •  & Lan Ma
  • Article
    | Open Access

    Magnetized plasmas display continuous spectra of current-sheet equilibria. How they select a particular equilibrium is not well understood. Now, equilibrium selection in magnetized plasmas is studied by analytical theory, particle-in-cell simulations and spacecraft observations, highlighting the role of current-sheet relaxation processes.

    • Young Dae Yoon
    • , Deirdre E. Wendel
    •  & Gunsu S. Yun
  • Article
    | Open Access

    Existing methods for temperature estimation of warm dense matter rely on model calculations. Here the authors report a method to extract the temperature of complex materials that is previously only inferred by using model calculations.

    • Tobias Dornheim
    • , Maximilian Böhme
    •  & Jan Vorberger
  • Article
    | Open Access

    Quasi-periodic pulsations (QPPs) are frequently detected in solar and stellar flares, but the underlying physical mechanisms are still to be ascertained. Here, the authors show microwave QPPs during a solar flare originating from quasi-periodic magnetic reconnection at the flare current sheet.

    • Yuankun Kou
    • , Xin Cheng
    •  & Mingde Ding
  • Article
    | Open Access

    It is known that cosmic rays could be accelerated by shock waves in supernova (SN) remnants. Here, the authors show that SN 1006 remnant is an efficient source of cosmic rays, providing observational support for the quasi-parallel acceleration mechanism.

    • Roberta Giuffrida
    • , Marco Miceli
    •  & Giovanni Peres
  • Article
    | Open Access

    It is suggested that waves can provide both diffusion and resistivity that can potentially support the reconnection electric field in low-density astrophysical plasmas. Here, the authors show, using direct spacecraft measurements, that the waves contribute to anomalous diffusion but do not contribute to the reconnection electric field.

    • D. B. Graham
    • , Yu. V. Khotyaintsev
    •  & K. Dokgo
  • Article
    | Open Access

    Several mechanisms exist for formation of jets observed in Earth’s magnetosheath. Here, the authors show evidence of high-speed downstream flows generated at the Earth’s bow shock as a direct consequence of shock reformation, which is different than the proposed mechanisms.

    • Savvas Raptis
    • , Tomas Karlsson
    •  & Per-Arne Lindqvist
  • Article
    | Open Access

    The magnetopause surface waves (SW) that drive global plasma dynamics are thought, like waves on water, to travel with the driving solar wind. Here, the authors show that impulsively-excited SW, with standing structure along the geomagnetic field, are stationary by propagating against this flow.

    • M. O. Archer
    • , M. D. Hartinger
    •  & L. Rastaetter
  • Article
    | Open Access

    Magnetized plasma can be regarded as topological matter. Here the authors identify a necessary and sufficient condition for the existence of topological edge mode and find that cold magnetized plasma has ten topological phases in the plasma frequency, cyclotron frequency and wave-vector space.

    • Yichen Fu
    •  & Hong Qin
  • Article
    | Open Access

    Energetic particle generation is an important component of a variety of astrophysical systems. Here, the authors show when magnetic pumping is extended to a spatially-varying magnetic flux tube, magnetic trapping of superthermal particles renders pumping an effective energization method for particles moving faster than the speed of the waves.

    • E. Lichko
    •  & J. Egedal
  • Article
    | Open Access

    Heating of the upper solar atmospheric layers is an open question. Here, the authors show observational evidence that ubiquitous Alfven pulses are excited by prevalent photospheric swirls, which are found to propagate upwards and carry enough energy flux needed to balance the local upper chromospheric energy loss.

    • Jiajia Liu
    • , Chris J. Nelson
    •  & Robert Erdélyi
  • Article
    | Open Access

    Magnetohydrodynamic (MHD) waves and plasma instabilities can be studied during solar flares. Here the authors show evidence for an MHD sausage mode oscillation periodically triggering electron acceleration at a magnetic null point in the solar corona, indicating MHD oscillations in plasma can indirectly lead to loss-cone instability modulation.

    • Eoin P. Carley
    • , Laura A. Hayes
    •  & Peter T. Gallagher
  • Article
    | Open Access

    Supersonic turbulence is relevant to astrophysical plasmas with their study mostly limited to numerical simulations. Here the authors demonstrate supersonic turbulence in collisional high Mach number plasma jets generated in laboratory by using high power lasers.

    • T. G. White
    • , M. T. Oliver
    •  & G. Gregori
  • Article
    | Open Access

    Various physical mechanisms are proposed to explain the heating observed in turbulent astrophysical plasmas. Here, Chen et al. find a signature consistent with one of these mechanisms, electron Landau damping, by applying a field-particle correlation technique to in situ spacecraft data of turbulence in the Earth’s magnetosheath.

    • C. H. K. Chen
    • , K. G. Klein
    •  & G. G. Howes
  • Article
    | Open Access

    Surface waves on the boundary between a magnetosphere and the surrounding plasma might get trapped by the ionosphere forming an eigenmode. Here, Archer et al. show direct observations of this proposed mechanism at Earth’s magnetosphere by analyzing the response to an isolated fast plasma jet detected by the THEMIS satellites.

    • M. O. Archer
    • , H. Hietala
    •  & V. Angelopoulos
  • Article
    | Open Access

    Magnetic reconnection is the process of releasing energy by magnetized and space plasma. Here the authors report experimental observation of magnetic reconnection in laser-produced plasma and the role of electron scaling on reconnection.

    • Y. Kuramitsu
    • , T. Moritaka
    •  & M. Hoshino
  • Article
    | Open Access

    Radial diffusion is the only mechanism considered to accelerate trapped electrons to relativistic energies in Saturn’s magnetic field, forming radiation belts. Here the authors show another mechanism, electron acceleration via Doppler shifted cyclotron resonant interaction with Z-mode waves, which can form radiation belts inside the orbit of Enceladus.

    • E. E. Woodfield
    • , R. B. Horne
    •  & W. S. Kurth
  • Article
    | Open Access

    The electric wind mechanism remains unclear. Here, the authors report evidence that electric wind is caused by an electrohydrodynamic force generated by charged particle drag as a result of momentum transfer to neutral particles.

    • Sanghoo Park
    • , Uros Cvelbar
    •  & Se Youn Moon
  • Article
    | Open Access

    Radio observations of the solar atmosphere provide a unique view on the non-thermal processes in the outer atmosphere. Here the authors use LOFAR observations to demonstrate that the observed radio burst characteristics are dominated by propagation effects rather than underlying emission variations.

    • E. P. Kontar
    • , S. Yu
    •  & P. Subramanian
  • Article
    | Open Access

    Solar eruptions provide opportunities to study magnetic flux ropes, a structure of fundamental importance for both plasma physics and space weather. Here the authors reveal the dynamic formation of a flux rope through its footprint on the solar surface, revealing a highly twisted core structure.

    • Wensi Wang
    • , Rui Liu
    •  & Chunming Zhu
  • Article
    | Open Access

    Understanding the role of magnetic turbulence in the atmosphere is difficult as direct access is limited, but latest laser technology can enable such studies in the lab. Here the authors probe the evolution of such turbulence in laser-generated plasma with its implications to astrophysical environments.

    • Gourab Chatterjee
    • , Kevin M. Schoeffler
    •  & G. Ravindra Kumar
  • Article
    | Open Access

    The dynamic of plasma heating in solar flares can be effectively derived from observations of optical hydrogen H-α line emissions. Here the authors report the observation of a C1.5 class flare that produced two H-α ribbons, interpreted combining radiative models affected by an electron beam.

    • Malcolm Druett
    • , Eamon Scullion
    •  & Luc Rouppe Van der Voort
  • Article
    | Open Access

    Alfvén waves are fundamental plasma modes that provide a mechanism for the transfer of energy between particles and fields. Here the authors confirm experimentally the conservative energy exchange between Alfvén wave fields and plasma particles via high-resolution MMS observations of Earth’s magnetosphere.

    • Daniel J. Gershman
    • , Adolfo F-Viñas
    •  & James L. Burch
  • Article
    | Open Access

    Back reaction of coronal magnetic fields on the solar surface may help to understand the coronal reconfiguration during a solar flare. Here the authors report observation of reversal of the rotation of a sunspot during a X1.6 flare with data from HMI.

    • Yi Bi
    • , Yunchun Jiang
    •  & Zhe Xu
  • Article
    | Open Access

    Sunspots are concentration of magnetic field visible on the solar surface, which were thought to be unaffected by solar flares that take place in the solar corona. Here the authors report evidence of a flare-induced rotation of a sunspot, showing nonuniform acceleration following the peaks of X-ray emissions.

    • Chang Liu
    • , Yan Xu
    •  & Haimin Wang
  • Article
    | Open Access

    The periodical change of the Crab nebula’s jet direction challenges our understanding of astrophysical jet dynamics. Here the authors use high-power lasers to create a jet that can be directly compared to the Crab nebula’s, and report the detection of plasma instabilities that mimic kink behaviour.

    • C. K. Li
    • , P. Tzeferacos
    •  & N. C. Woolsey
  • Article
    | Open Access

    The processes that lead to losses of highly energetic particles from Earth’s radiation belts remain poorly understood. Here the authors compare observations and models of a 2013 event to show that electromagnetic ioncyclotron waves provide the dominant loss mechanism at ultra-relativistic energies.

    • Yuri Y. Shprits
    • , Alexander Y. Drozdov
    •  & Nikita A. Aseev
  • Article
    | Open Access

    Magnetic reconnection is a fundamental process giving rise to topology change and energy release in plasmas, of particular relevance for the Sun. Here the authors report the observation of fast reconnection in a solar filament eruption, which occurs between a set of ambient fibrils and the filament itself.

    • Zhike Xue
    • , Xiaoli Yan
    •  & Li Zhao
  • Article
    | Open Access

    Alfvénic waves are oscillations that occur in a plasma threaded by a magnetic field and their propagation, reflection and dissipation is believed to be partly responsible for the solar wind. Here, the authors observe the counter-propagating Alfvénic waves that most models require for solar-wind acceleration.

    • R. J. Morton
    • , S. Tomczyk
    •  & R. Pinto
  • Article |

    A full understanding of the heating and dynamics of the Sun's atmosphere remains elusive, but magnetohydrodynamic waves are believed to be crucial. Using observations from the ROSA imager, this study finds compressive waves in the solar chromosphere, which may provide the energy needed for coronal heating.

    • Richard J. Morton
    • , Gary Verth
    •  & Robertus Erdélyi
  • Article
    | Open Access

    At extreme temperature and pressure, materials can form new dense phases with unusual physical properties. Here, laser-induced microexplosions are used to produce a superdense, stable, body-centred-cubic form of aluminium, which was previously predicted to exist at pressures above 380GPa.

    • Arturas Vailionis
    • , Eugene G. Gamaly
    •  & Saulius Juodkazis
  • Article
    | Open Access

    A bubble at an air–liquid interface can form a liquid jet upon bursting, spraying aerosol droplets into the air. Leeet al. show that jetting is analogous to pinching-off in liquid coalescence, which may be useful in applications that prevent jet formation and in the improved incorporation of aerosols in climate models.

    • Ji San Lee
    • , Byung Mook Weon
    •  & Wah-Keat Lee
  • Article
    | Open Access

    Theory and simulations predict scale-invariant concentration fluctuations during diffusion in liquids, but on Earth, large-scale fluctuations are damped by gravity. Microgravity experiments by Vailatiet al. reveal the scale-invariant nature of diffusion, associated with fractal fronts and long-ranged correlations.

    • Alberto Vailati
    • , Roberto Cerbino
    •  & Marzio Giglio