Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Basic Research

SOCS1 inhibits migration and invasion of prostate cancer cells, attenuates tumor growth and modulates the tumor stroma

Subjects

Abstract

Background:

The suppressor of cytokine signaling 1 (SOCS1) gene is repressed in prostate cancer (PCa) by epigenetic silencing and microRNA miR30d. Increased expression of the SOCS1-targeting miR30d correlates with higher biochemical recurrence, suggesting a tumor suppressor role of SOCS1 in PCa, but the underlying mechanisms are unclear. We have shown that SOCS1 inhibits MET receptor kinase signaling, a key oncogenic pathway in cancer progression. Here we evaluated the role of SOCS1 in attenuating MET signaling in PCa cells and tumor growth in vivo.

Methods:

MET-overexpressing human DU145 and PC3 PCa cell lines were stably transduced with SOCS1, and their growth, migration and invasion of collagen matrix were evaluated in vitro. Cells expressing SOCS1 or the control vector were evaluated for tumor growth in NOD.scid.gamma mice as xenograft or orthotopic tumors.

Results:

HGF-induced MET signaling was attenuated in SOCS1-expressing DU145 and PC3 cells. Compared with vector control cells, SOCS1-expressing cells showed reduced proliferation and impaired migration following HGF stimulation. DU145 and PC3 cells showed marked ability to invade the collagen matrix following HGF stimulation and this was attenuated by SOCS1. As xenografts, SOCS1-expressing PCa cells showed significantly reduced tumor growth compared with vector control cells. In the orthotopic tumor model, SOCS1 reduced the growth of primary tumors and metastatic spread. Intriguingly, the SOCS1-expressing DU145 and PC3 tumors showed increased collagen deposition, associated with increased frequency of myofibroblasts.

Conclusions:

Our findings support the tumor suppressor role of SOCS1 in PCa and suggest that attenuation of MET signaling is one of the underlying mechanisms. SOCS1 in PCa cells also appears to prevent the tumor-promoting functions of cancer-associated fibroblasts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A . Cancer statistics, 2016. CA Cancer J Clin 2016; 66: 7–30.

    Article  PubMed  Google Scholar 

  2. Denmeade SR, Isaacs JT . A history of prostate cancer treatment. Nat Rev Cancer 2002; 2: 389–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shen MM, Abate-Shen C . Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 2010; 24: 1967–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haverkamp J, Charbonneau B, Ratliff TL . Prostate inflammation and its potential impact on prostate cancer: a current review. J Cell Biochem 2008; 103: 1344–1353.

    Article  CAS  PubMed  Google Scholar 

  5. Culig Z, Puhr M . Interleukin-6: a multifunctional targetable cytokine in human prostate cancer. Mol Cell Endocrinol 2012; 360: 52–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ et al. A family of cytokine-inducible inhibitors of signalling. Nature 1997; 387: 917–921.

    Article  CAS  PubMed  Google Scholar 

  7. Flowers LO, Subramaniam PS, Johnson HM . A SOCS-1 peptide mimetic inhibits both constitutive and IL-6 induced activation of STAT3 in prostate cancer cells. Oncogene 2005; 24: 2114–2120.

    Article  CAS  PubMed  Google Scholar 

  8. Neuwirt H, Puhr M, Santer FR, Susani M, Doppler W, Marcias G et al. Suppressor of cytokine signaling (SOCS)-1 is expressed in human prostate cancer and exerts growth-inhibitory function through down-regulation of cyclins and cyclin-dependent kinases. Am J Pathol 2009; 174: 1921–1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth- suppression activity. Nat Genet 2001; 28: 29–35.

    CAS  PubMed  Google Scholar 

  10. Galm O, Yoshikawa H, Esteller M, Osieka R, Herman JG . SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood 2003; 101: 2784–2788.

    Article  CAS  PubMed  Google Scholar 

  11. Liu TC, Lin SF, Chang JG, Yang MY, Hung SY, Chang CS . Epigenetic alteration of the SOCS1 gene in chronic myeloid leukaemia. Br J Haematol 2003; 123: 654–661.

    Article  CAS  PubMed  Google Scholar 

  12. Fukushima N, Sato N, Sahin F, Su GH, Hruban RH, Goggins M . Aberrant methylation of suppressor of cytokine signalling-1 (SOCS-1) gene in pancreatic ductal neoplasms. Br J Cancer 2003; 89: 338–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sasi W, Sharma AK, Mokbel K . The role of suppressors of cytokine signalling in human neoplasms. Mol Biol Int 2014; 2014: 630797.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rottapel R, Ilangumaran S, Neale C, La Rose J, Ho JM, Nguyen MH et al. The tumor suppressor activity of SOCS-1. Oncogene 2002; 21: 4351–4362.

    Article  CAS  PubMed  Google Scholar 

  15. Hanada T, Kobayashi T, Chinen T, Saeki K, Takaki H, Koga K et al. IFNgamma-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice. J Exp Med 2006; 203: 1391–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yeganeh M, Gui Y, Kandhi R, Bobbala D, Tobelaim WS, Saucier C et al. Suppressor of cytokine signaling 1-dependent regulation of the expression and oncogenic functions of p21 in the liver. Oncogene 2016; 35: 4200–4211.

    Article  CAS  PubMed  Google Scholar 

  17. Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA 2008; 105: 12885–12890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang S, Zhang HW, Lu MH, He XH, Li Y, Gu H et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res 2010; 70: 3119–3127.

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki M, Shigematsu H, Shivapurkar N, Reddy J, Miyajima K, Takahashi T et al. Methylation of apoptosis related genes in the pathogenesis and prognosis of prostate cancer. Cancer Lett 2006; 242: 222–230.

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi N, Uemura H, Nagahama K, Okudela K, Furuya M, Ino Y et al. Identification of miR-30d as a novel prognostic maker of prostate cancer. Oncotarget 2012; 3: 1455–1471.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gui Y, Yeganeh M, Ramanathan S, Leblanc C, Pomerleau V, Ferbeyre G et al. SOCS1 controls liver regeneration by regulating HGF signaling in hepatocytes. J Hepatol 2011; 55: 1300–1308.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu ML, Kyprianou N . Androgen receptor and growth factor signaling cross-talk in prostate cancer cells. Endocr Relat Cancer 2008; 15: 841–849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cen B, Mahajan S, Wang W, Kraft AS . Elevation of receptor tyrosine kinases by small molecule AKT inhibitors in prostate cancer is mediated by Pim-1. Cancer Res 2013; 73: 3402–3411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen Y, Xin X, Li J, Xu J, Yu X, Li T et al. RTK/ERK pathway under natural selection associated with prostate cancer. PLoS One 2013; 8: e78254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pisters LL, Troncoso P, Zhau HE, Li W, von Eschenbach AC, Chung LW . c-met proto-oncogene expression in benign and malignant human prostate tissues. J Urol 1995; 154: 293–298.

    Article  CAS  PubMed  Google Scholar 

  26. Humphrey PA, Zhu X, Zarnegar R, Swanson PE, Ratliff TL, Vollmer RT et al. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am J Pathol 1995; 147: 386–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Knudsen BS, Gmyrek GA, Inra J, Scherr DS, Vaughan ED, Nanus DM et al. High expression of the Met receptor in prostate cancer metastasis to bone. Urology 2002; 60: 1113–1117.

    Article  PubMed  Google Scholar 

  28. Varkaris A, Corn PG, Gaur S, Dayyani F, Logothetis CJ, Gallick GE . The role of HGF/c-Met signaling in prostate cancer progression and c-Met inhibitors in clinical trials. Expert Opin Investig Drugs 2011; 20: 1677–1684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yasuda K, Nagakawa O, Akashi T, Fujiuchi Y, Koizumi K, Komiya A et al. Serum active hepatocyte growth factor (AHGF) in benign prostatic disease and prostate cancer. Prostate 2009; 69: 346–351.

    Article  CAS  PubMed  Google Scholar 

  30. Gupta A, Karakiewicz PI, Roehrborn CG, Lotan Y, Zlotta AR, Shariat SF . Predictive value of plasma hepatocyte growth factor/scatter factor levels in patients with clinically localized prostate cancer. Clin Cancer Res 2008; 14: 7385–7390.

    Article  CAS  PubMed  Google Scholar 

  31. Russo AL, Jedlicka K, Wernick M, McNally D, Kirk M, Sproull M et al. Urine analysis and protein networking identify met as a marker of metastatic prostate cancer. Clin Cancer Res 2009; 15: 4292–4298.

    Article  CAS  PubMed  Google Scholar 

  32. Hurle RA, Davies G, Parr C, Mason MD, Jenkins SA, Kynaston HG et al. Hepatocyte growth factor/scatter factor and prostate cancer: a review. Histol Histopathol 2005; 20: 1339–1349.

    CAS  PubMed  Google Scholar 

  33. Okamoto M, Lee C, Oyasu R . Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcinoma cells in vitro. Cancer Res 1997; 57: 141–146.

    CAS  PubMed  Google Scholar 

  34. Gui Y, Yeganeh M, Donates YC, Tobelaim WS, Chababi W, Mayhue M et al. Regulation of MET receptor tyrosine kinase signaling by suppressor of cytokine signaling 1 in hepatocellular carcinoma. Oncogene 2015; 34: 5718–5728.

    Article  CAS  PubMed  Google Scholar 

  35. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF . Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4: 915–925.

    Article  CAS  PubMed  Google Scholar 

  36. Lu P, Weaver VM, Werb Z . The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012; 196: 395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Havens AM, Pedersen EA, Shiozawa Y, Ying C, Jung Y, Sun Y et al. An in vivo mouse model for human prostate cancer metastasis. Neoplasia 2008; 10: 371–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Calvi EN, Nahas FX, Barbosa MV, Calil JA, Ihara SS, Silva Mde S et al. An experimental model for the study of collagen fibers in skeletal muscle. Acta Cir Bras 2012; 27: 681–686.

    Article  PubMed  Google Scholar 

  39. Kalluri R, Zeisberg M . Fibroblasts in cancer. Nat Rev Cancer 2006; 6: 392–401.

    Article  CAS  PubMed  Google Scholar 

  40. Davies G, Jiang WG, Mason MD . Cell-cell adhesion molecules and signaling intermediates and their role in the invasive potential of prostate cancer cells. J Urol 2000; 163: 985–992.

    Article  CAS  PubMed  Google Scholar 

  41. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18: 11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kumar A, Coleman I, Morrissey C, Zhang X, True LD, Gulati R et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med 2016; 22: 369–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cancer Genome Atlas Research N. The molecular taxonomy of primary prostate cancer. Cell 2015; 163: 1011–1025.

    Article  Google Scholar 

  44. Kazi JU, Kabir NN, Flores-Morales A, Ronnstrand L . SOCS proteins in regulation of receptor tyrosine kinase signaling. Cell Mol Life Sci 2014; 71: 3297–3310.

    Article  CAS  PubMed  Google Scholar 

  45. Kleinman HK, Martin GR . Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 2005; 15: 378–386.

    Article  CAS  PubMed  Google Scholar 

  46. Augsten M . Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol 2014; 4: 62.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chlenski A, Liu S, Guerrero LJ, Yang Q, Tian Y, Salwen HR et al. SPARC expression is associated with impaired tumor growth, inhibited angiogenesis and changes in the extracellular matrix. Int J Cancer 2006; 118: 310–316.

    Article  CAS  PubMed  Google Scholar 

  48. Haroon ZA, Amin K, Lichtlen P, Sato B, Huynh NT, Wang Z et al. Loss of metal transcription factor-1 suppresses tumor growth through enhanced matrix deposition. FASEB J 2004; 18: 1176–1184.

    Article  CAS  PubMed  Google Scholar 

  49. Calabrese V, Mallette FA, Deschenes-Simard X, Ramanathan S, Gagnon J, Moores A et al. SOCS1 links cytokine signaling to p53 and senescence. Mol Cell 2009; 36: 754–767.

    Article  CAS  PubMed  Google Scholar 

  50. Smith M, De Bono J, Sternberg C, Le Moulec S, Oudard S, De Giorgi U et al. Phase III study of cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J Clin Oncol 2016; 34: 3005–3013.

    Article  CAS  PubMed  Google Scholar 

  51. Alumkal JJ, Beer TM . Raising the bar for therapeutic trials in advanced prostate cancer. J Clin Oncol 2016; 34: 2958–2960.

    Article  PubMed  Google Scholar 

  52. Ge D, Gao AC, Zhang Q, Liu S, Xue Y, You Z . LNCaP prostate cancer cells with autocrine interleukin-6 expression are resistant to IL-6-induced neuroendocrine differentiation due to increased expression of suppressors of cytokine signaling. Prostate 2012; 72: 1306–1316.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Robert Day for providing PCa cell lines. AVH and RK are supported by Master’s degree scholarship from the Faculty of Medicine, Université de Sherbrooke. DB is a recipient of a postdoctoral fellowship from FRQS. CRCHUS is an FRQS-funded research center. This work was supported by Movember Discovery Grant from Prostate Cancer Canada (Grant number D2013-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Ilangumaran.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Prostate Cancer and Prostatic Diseases website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villalobos-Hernandez, A., Bobbala, D., Kandhi, R. et al. SOCS1 inhibits migration and invasion of prostate cancer cells, attenuates tumor growth and modulates the tumor stroma. Prostate Cancer Prostatic Dis 20, 36–47 (2017). https://doi.org/10.1038/pcan.2016.50

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2016.50

This article is cited by

Search

Quick links