Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gastric cancer and gene copy number variation: emerging cancer drivers for targeted therapy

Abstract

Gastric cancer (GC) is among the most common malignancy in the world with poor prognosis and limited treatment options. It has been established that gastric carcinogenesis is caused by a complex interaction between host and environmental factors. Copy number variation (CNV) refers to a form of genomic structural variation that results in abnormal gene copy numbers, including gene amplification, gain, loss and deletion. DNA CNV is an important influential factor for the expression of both protein-coding and non-coding genes, affecting the activity of various signaling pathways. CNV arises as a result of preferential selection that favors cancer development, and thus, targeting the amplified 'driver genes' in GC may provide novel opportunities for personalized therapy. The detection of CNVs in chromosomal or mitochondrial DNA from tissue or blood samples may assist the diagnosis, prognosis and targeted therapy of GC. In this review, we discuss the recent CNV discoveries that shed light on the molecular pathogenesis of GC, with a specific emphasis on CNVs that display diagnostic, prognostic or therapeutic significances in GC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359–E386.

    Article  CAS  PubMed  Google Scholar 

  2. Chen W, Zheng R, Zhang S, Zhao P, Zeng H, Zou X . Report of cancer incidence and mortality in China, 2010. Ann Transl Med 2014; 2: 61.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Waddell T, Chau I, Cunningham D, Gonzalez D, Frances A, Okines C et al. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): a randomised, open-label phase 3 trial. Lancet Oncol 2013; 14: 9.

    Article  CAS  Google Scholar 

  4. Lordick F, Kang YK, Chung HC, Salman P, Oh SC, Bodoky G et al. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open-label phase 3 trial. Lancet Oncol 2013; 14: 10.

    Article  CAS  Google Scholar 

  5. Smalley SR, Benedetti JK, Haller DG, Hundahl SA, Estes NC, Ajani JA et al. Updated Analysis of SWOG-Directed Intergroup Study 0116:A Phase III Trial of Adjuvant Radiochemotherapy Versus Observation After Curative Gastric Cancer Resection. J Clin Oncol 2012; 30: 7.

    Article  CAS  Google Scholar 

  6. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM . Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127: 2893–2917.

    Article  CAS  PubMed  Google Scholar 

  7. Siegel RL, Miller KD, Jemal A . Cancer statistics, 2015. CA Cancer J Clin 2015; 65: 5–29.

    Article  PubMed  Google Scholar 

  8. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A . Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87–108.

    Article  PubMed  Google Scholar 

  9. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010; 376: 11.

    Article  Google Scholar 

  10. Xie L, Su X, Zhang L, Yin X, Tang L, Zhang X et al. FGFR2 gene amplification in gastric cancer predicts sensitivity to the selective FGFR inhibitor AZD4547. Clin Cancer Res 2013; 19: 2572–2583.

    Article  CAS  PubMed  Google Scholar 

  11. Okamoto W, Okamoto I, Arao T, Kuwata K, Hatashita E, Yamaguchi H et al. Antitumor action of the MET tyrosine kinase inhibitor crizotinib (PF-02341066) in gastric cancer positive for MET amplification. Mol Cancer Ther 2012; 11: 1557–1564.

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura Y . DNA variations in human and medical genetics: 25 years of my experience. J Hum Genet 2009; 54: 1–8.

    Article  CAS  PubMed  Google Scholar 

  13. Leary RJ, Lin JC, Cummins J, Boca S, Wood LD, Parsons DW et al. Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers. Proc Natl Acad Sci USA 2008; 105: 16224–16229.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Despierre E, Moisse M, Yesilyurt B, Sehouli J, Braicu I, Mahner S et al. Somatic copy number alterations predict response to platinum therapy in epithelial ovarian cancer. Gynecol Oncol 2014; 135: 415–422.

    Article  CAS  PubMed  Google Scholar 

  15. Xu H, Zhu X, Xu Z, Hu Y, Bo S, Xing T et al. Non-invasive analysis of genomic copy number variation in patients with hepatocellular carcinoma by next generation DNA sequencing. J Cancer 2015; 6: 247–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Silveira SM, da Cunha IW, Marchi FA, Busso AF, Lopes A, Rogatto SR . Genomic screening of testicular germ cell tumors from monozygotic twins. Orphanet J Rare Dis 2014; 9: 9.

    Article  Google Scholar 

  17. Horpaopan S, Spier I, Zink AM, Altmuller J, Holzapfel S, Laner A et al. Genome-wide CNV analysis in 221 unrelated patients and targeted high-throughput sequencing reveal novel causative candidate genes for colorectal adenomatous polyposis. Int J Cancer 2015; 136: E578–E589.

    Article  CAS  PubMed  Google Scholar 

  18. Bonberg N, Pesch B, Behrens T, Johnen G, Taeger D, Gawrych K et al. Chromosomal alterations in exfoliated urothelial cells from bladder cancer cases and healthy men:a prospective screening study. BMC Cancer 2014; 14: 11.

    Article  CAS  Google Scholar 

  19. Mauro JA, Butler SN, Ramsamooj M, Blanck G . Copy number loss or silencing of apoptosis-effector genes in cancer. Gene 2015; 554: 50–57.

    Article  CAS  PubMed  Google Scholar 

  20. Labots M, Buffart TE, Haan JC, van Grieken NC, Tijssen M, van de Velde CJ et al. High-level copy number gains of established and potential drug target genes in gastric cancer as a lead for treatment development and selection. Cell Oncol 2014; 37: 41–52.

    Article  CAS  Google Scholar 

  21. Niels TF, Anja B, Jan TJ . The HER2 CISH pharmDxâ„¢ Kit in the assessment of breast cancer patients for anti-HER2 treatment. Expert Rev Mol Diagn 2013; 13: 10.

    Google Scholar 

  22. Shi J, Qu Y-P, Hou P . Pathogenetic mechanisms in gastric cancer. World J Gastroenterol 2014. 20.

  23. Figueiredo C, Garcia-Gonzalez MA, Machado JC . Molecular pathogenesis of gastric cancer. Helicobacter 2013; 18: 28–33.

    Article  PubMed  Google Scholar 

  24. Park CH, Rha SY, Jeung HC, Kang SH, Ki DH, Lee WS et al. Identification of novel gastric cancer-associated CNVs by integrated analysis of microarray. J Surg Oncol 2010; 102: 454–461.

    Article  PubMed  Google Scholar 

  25. Piazuelo MB, Correa P . Gastric cancer: Overview. Colomb Med 2013; 44: 10.

    Google Scholar 

  26. Zhang L, Sung JJ, Yu J, Ng SC, Wong SH, Cho CH et al. Xenophagy in Helicobacter pylori- and Epstein-Barr virus-induced gastric cancer. J Pathol 2014; 233: 103–112.

    Article  CAS  PubMed  Google Scholar 

  27. Hatakeyama M . Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe 2014; 15: 306–316.

    Article  CAS  PubMed  Google Scholar 

  28. Ferreira RM, Machado JC, Figueiredo C . Clinical relevance of Helicobacter pylori vacA and cagA genotypes in gastric carcinoma. Best Pract Res Clin Gastroenterol 2014; 28: 1003–1015.

    Article  CAS  PubMed  Google Scholar 

  29. Sun K, Chen S, Xu J, Li G, He Y . The prognostic significance of the prognostic nutritional index in cancer: a systematic review and meta-analysis. J Cancer Res Clin Oncol 2014; 140: 1537–1549.

    Article  PubMed  Google Scholar 

  30. Ang TL, Fock KM . Clinical epidemiology of gastric cancer. Singapore Med J 2014; 55: 621–628.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bornschein J, Kandulski A, Selgrad M, Malfertheiner P . From gastric inflammation to gastric cancer. Dig Dis 2010; 28: 609–614.

    Article  PubMed  Google Scholar 

  32. Fan B, Dachrut S, Coral H, Yuen ST, Chu KM, Law S et al. Integration of DNA copy number alterations and transcriptional expression analysis in human gastric cancer. PloS One 2012; 7: e29824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Takeshima H, Niwa T, Takahashi T, Wakabayashi M, Yamashita S, Ando T et al. Frequent involvement of chromatin remodeler alterations in gastric field cancerization. Cancer Lett 2015; 357: 328–338.

    Article  CAS  PubMed  Google Scholar 

  34. Yoda Y, Takeshima H, Niwa T, Kim JG, Ando T, Kushima R et al. Integrated analysis of cancer-related pathways affected by genetic and epigenetic alterations in gastric cancer. Gastric Cancer 2015; 18: 65–76.

    Article  CAS  PubMed  Google Scholar 

  35. Katoh M . Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (Review). Int J Mol Med 2013; 32: 763–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hudler P . Genetic aspects of gastric cancer instability. ScientificWorldJournal 2012; 2012: 10.

    Article  CAS  Google Scholar 

  37. Xia J, Guo X, Yan J, Deng K . The role of miR-148a in gastric cancer. J Cancer Res Clin Oncol 2014; 140: 1451–1456.

    Article  CAS  PubMed  Google Scholar 

  38. Shi ZQ, Wei QX, She JJ . MicroRNAs in gastric cancer metastasis. Crit Rev Eukaryot Gene Expr 2014; 24: 14.

    Google Scholar 

  39. Deng N, Goh LK, Wang H, Das K, Tao J, Tan IB et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut 2012; 61: 673–684.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang D, Wang Z, Luo Y, Xu Y, Liu Y, Yang W et al. Analysis of DNA copy number aberrations by multiple ligation-dependent probe amplification on 50 intestinal type gastric cancers. J Surg Oncol 2011; 103: 124–132.

    Article  PubMed  Google Scholar 

  41. Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet 2014; 46: 573–582.

    Article  CAS  PubMed  Google Scholar 

  42. Kiyose S, Igarashi H, Nagura K, Kamo T, Kawane K, Mori H et al. Chromogenic in situ hybridization (CISH) to detect HER2 gene amplification in breast and gastric cancer: comparison with immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). Pathol Int 2012; 62: 728–734.

    Article  CAS  PubMed  Google Scholar 

  43. Krepischi ACV, Pearson PL, Rosenberg C . Germline copy number variations and cancer predisposition. Future Oncol 2012; 8: 10.

    Article  CAS  Google Scholar 

  44. Hu Y, Wang J, Qian J, Kong X, Tang J, Wang Y et al. Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer Res 2014; 74: 6890–6902.

    Article  CAS  PubMed  Google Scholar 

  45. Hu L, Wu Y, Tan D, Meng H, Wang K, Bai Y et al. Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma. J Exp Clin Cancer Res 2015; 34: 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004. 304.

  47. Shi J, Yao D, Liu W, Wang N, Lv H, Zhang G et al. Highly frequent PIK3CA amplification is associated with poor prognosis in gastric cancer. BMC Cancer 2012; 12: 50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang Q, Shao Y, Shi J, Qu Y, Wu K, Dang S et al. Concomitant PIK3CA amplification and RASSF1A or PAX6 hypermethylation predict worse survival in gastric cancer. Clin Biochem e-pub ahead of print 25 October 2013. doi: 10.1016/j.clinbiochem.2013.10.014.

  49. Takahashi N, Yamada Y, Taniguchi H, Fukahori M, Sasaki Y, Shoji H et al. Clinicopathological features and prognostic roles of KRAS, BRAF, PIK3CA and NRAS mutations in advanced gastric cancer. BMC Res Notes 2014; 7: 271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoshida S, Matsumoto K, Arao T, Taniguchi H, Goto I, Hanafusa T et al. Gene amplification of ribosomal protein S6 kinase-1 and -2 in gastric cancer. Anticancer Res 2013; 33: 469–475.

    CAS  PubMed  Google Scholar 

  51. Shinmura K, Kiyose S, Nagura K, Igarashi H, Inoue Y, Nakamura S et al. TNK2 gene amplification is a novel predictor of a poor prognosis in patients with gastric cancer. J Surg Oncol 2014; 109: 189–197.

    Article  CAS  PubMed  Google Scholar 

  52. Li Z, Li W, Song L, Zhu W . Cilia adenomatous polyposis coli and associated diseases. Oncogene 2012; 31: 1475–1483.

    Article  CAS  PubMed  Google Scholar 

  53. Gray SE, Kay EW, Mary L, Mabruk M . Analysis of APC allelic imbalance/loss of heterozygosity and APC protein expression in cutaneous squamous cell carcinomas. Cancer Genomics Proteomics 2011. 8.

  54. Bria E, De Manzoni G, Beghelli S, Tomezzoli A, Barbi S, Di Gregorio C et al. A clinical-biological risk stratification model for resected gastric cancer: prognostic impact of Her2, Fhit, and APC expression status. Ann Oncol 2013; 24: 693–701.

    Article  CAS  PubMed  Google Scholar 

  55. Tsai PC, Huang SW, Tsai HL, Ma CJ, Hou MF, Yang LP et al. The association between DNA copy number aberrations at chromosome 5q22 and gastric cancer. PLoS One 2014. 9.

  56. Buffart TE, Carvalho B, van Grieken NC, van Wieringen WN, Tijssen M, Kranenbarg EM et al. Losses of chromosome 5q and 14q are associated with favorable clinical outcome of patients with gastric cancer. Oncologist 2012; 17: 653–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qian Z, Zhu G, Tang L, Wang M, Zhang L, Fu J et al. Whole genome gene copy number profiling of gastric cancer identifies PAK1 and KRAS gene amplification as therapy targets. Genes Chromosomes Cancer 2014; 53: 883–894.

    Article  CAS  PubMed  Google Scholar 

  58. Chang VY, Federman N, Martinez-Agosto J, Tatishchev SF, Nelson SF . Whole exome sequencing of pediatric gastric adenocarcinoma reveals an atypical presentation of Li-Fraumeni syndrome. Pediatr Blood Cancer 2013; 60: 570–574.

    Article  PubMed  Google Scholar 

  59. Lee J, van Hummelen P, Go C, Palescandolo E, Jang J, Park HY et al. High-throughput mutation profiling identifies frequent somatic mutations in advanced gastric adenocarcinoma. PLoS One 2012; 7: e38892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fang Z, Xiong Y, Li J, Liu L, Zhang W, Zhang C et al. APC gene deletions in gastric adenocarcinomas in a Chinese population: a correlation with tumour progression. Clin Transl Oncol 2012; 14: 60–65.

    Article  CAS  PubMed  Google Scholar 

  61. Jin G, Xu L, Shu Y, Tian T, Liang J, Xu Y et al. Common genetic variants on 5p15.33 contribute to risk of lung adenocarcinoma in a Chinese population. Carcinogenesis 2009; 30: 987–990.

    Article  CAS  PubMed  Google Scholar 

  62. Guo X, Liu W, Pan Y, Ni P, Ji J, Guo L et al. Homeobox gene IRX1 is a tumor suppressor gene in gastric carcinoma. Oncogene 2010; 29: 3908–3920.

    Article  CAS  PubMed  Google Scholar 

  63. Jung KH, Park BH, Hong SS . Progress in cancer therapy targeting c-Met signaling pathway. Arch Pharm Res 2012; 35: 595–604.

    Article  CAS  PubMed  Google Scholar 

  64. An X, Wang F, Shao Q, Wang F-H, Wang Z-Q, Chen C et al. METamplification is not rare and predicts unfavorable clinical outcomes in patients with recurrent/metastatic gastric cancer after chemotherapy. Cancer 2014; 120: 675–682.

    Article  CAS  PubMed  Google Scholar 

  65. Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G, Targeting MET . in cancer: rationale and progress. Nat Rev Cancer 2012; 12: 89–103.

    Article  CAS  PubMed  Google Scholar 

  66. Liu X, Newton RC, Scherle PA . Developing c-MET pathway inhibitors for cancer therapy: progress and challenges. Trends Mol Med 2010; 16: 37–45.

    Article  CAS  PubMed  Google Scholar 

  67. Janjigian YY, Tang LH, Coit DG, Kelsen DP, Francone TD, Weiser MR et al. MET expression and amplification in patients with localized gastric cancer. Cancer Epidemiol Biomarkers Prev 2011; 20: 1021–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lennerz JK, Kwak EL, Ackerman A, Michael M, Fox SB, Bergethon K et al. MET amplification identifies a small and aggressive subgroup of esophagogastric adenocarcinoma with evidence of responsiveness to crizotinib. J Clin Oncol 2011; 29: 4803–4810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee J, Seo JW, Jun HJ, Ki CS, Park SH, Park YS et al. Impact of MET amplification on gastric cancer: possible roles as a novel prognostic marker and a potential therapeutic target. Oncol Rep 2011; 25: 1517–1524.

    CAS  PubMed  Google Scholar 

  70. Graziano F, Galluccio N, Lorenzini P, Ruzzo A, Canestrari E, D'Emidio S et al. Genetic activation of the MET pathway and prognosis of patients with high-risk, radically resected gastric cancer. J Clin Oncol 2011; 29: 4789–4795.

    Article  CAS  PubMed  Google Scholar 

  71. Ha SY, Lee J, Kang SY, Do IG, Ahn S, Park JO et al. MET overexpression assessed by new interpretation method predicts gene amplification and poor survival in advanced gastric carcinomas. Mod Pathol 2013; 26: 1632–1641.

    Article  CAS  PubMed  Google Scholar 

  72. Teng L, Lu J . cMET as a potential therapeutic target in gastric cancer (Review). Int J Mol Med 2013; 32: 1247–1254.

    Article  CAS  PubMed  Google Scholar 

  73. Kawakami H, Okamoto I, Arao T, Okamoto W, Matsumoto K, Taniguchi H et al. MET amplification as a potential therapeutic target in gastric cancer. Oncotarget 2013; 4: 9.

    Article  PubMed  Google Scholar 

  74. Gavine PR, Ren Y, Han L, Lv J, Fan S, Zhang W et al. Volitinib, a potent and highly selective c-Met inhibitor, effectively blocks c-Met signaling and growth in c-MET amplified gastric cancer patient-derived tumor xenograft models. Mol Oncol 2015; 9: 323–333.

    Article  CAS  PubMed  Google Scholar 

  75. Patel R, Leung HY . Targeting the EGFR-family for therapy: Biological challenges and clinical perspective. Curr Pharm Des 2012; 18: 2672–2679.

    Article  CAS  PubMed  Google Scholar 

  76. Hong L, Han Y, Brain L . The role of epidermal growth factor receptor in prognosis and treatment of gastric cancer. Exp Rev Gastroenterol Hepatol 2014; 8: 111–117.

    Article  CAS  Google Scholar 

  77. Yarden Y, Pines G . The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 2012; 12: 553–563.

    Article  CAS  PubMed  Google Scholar 

  78. Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK . Targeting the EGFR signaling pathway in cancer therapy. Exp Opin Ther Targets 2012. 16.

  79. Fuse N, Kuboki Y, Kuwata T, Nishina T, Kadowaki S, Shinozaki E et al. Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients. Gastric Cancer e-pub ahead of print 15 February 2015.

  80. Hong L, Han Y, Yang J, Zhang H, Jin Y, Brain L et al. Prognostic value of epidermal growth factor receptor in patients with gastric cancer: a meta-analysis. Gene 2013; 529: 69–72.

    Article  CAS  PubMed  Google Scholar 

  81. Wang YK, Gao CF, Yun T, Chen Z, Zhang XW, Lv XX et al. Assessment of ERBB2 and EGFR gene amplification and protein expression in gastric carcinoma by immunohistochemistry and fluorescence in situ hybridization. Mol Cytogenet 2011; 4: 14.

    Article  Google Scholar 

  82. Rossi E, Villanacci V, Danesino C, Donato F, Nascimbeni R, Bassotti G . Epidermal growth factor receptor overexpression/amplification in adenocarcinomas arising in the gastrointestinal tract. Rev Esp Enferm Dig 2011; 103: 632–639.

    Article  CAS  PubMed  Google Scholar 

  83. Oh HS, Eom DW, Kang GH, Ahn YC, Lee SJ, Kim JH et al. Prognostic implications of EGFR and HER-2 alteration assessed by immunohistochemistry and silver in situ hybridization in gastric cancer patients following curative resection. Gastric Cancer 2014; 17: 402–411.

    Article  CAS  PubMed  Google Scholar 

  84. Higaki E, Kuwata T, Nagatsuma AK, Nishida Y, Kinoshita T, Aizawa M et al. Gene copy number gain of EGFR is a poor prognostic biomarker in gastric cancer: evaluation of 855 patients with bright-field dual in situ hybridization (DISH) method. Gastric Cancer e-pub ahead of print 9 December 2014.

  85. Herold S, Herkert B, Eilers M . Facilitating replication under stress: an oncogenic function of MYC? Nat Rev Cancer 2009; 9: 441–444.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang L, Hou Y, Ashktorab H, Gao L, Xu Y, Wu K et al. The impact of C-MYC gene expression on gastric cancer cell. Mol Cell Biochem 2010; 344: 125–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Silva TC, Leal MF, Calcagno DQ, de Souza CR, Khayat AS, dos Santos NP et al. hTERT, MYC and TP53 deregulation in gastric preneoplastic lesions. BMC Gastroenterol 2012; 12: 85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Leal MF, Calcagno DQ, Borges da Costa Jde F, Silva TC, Khayat AS, Chen ES et al. MYC, TP53, and chromosome 17 copy-number alterations in multiple gastric cancer cell lines and in their parental primary tumors. J Biomed Biotechnol 2011; 2011: 631268.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ribeiro HF, Alcântara DFA, Matos LA, Sousa JMC, Leal MF, Smith MAC et al. Cytogenetic characterization and evaluation of c-MYC gene amplification in PG100, a new Brazilian gastric cancer cell line. Braz J Med Biol Res 2010; 43: 717–721.

    Article  CAS  PubMed  Google Scholar 

  90. Sonoda A, Mukaisho K, Nakayama T, Diem VT, Hattori T, Andoh A et al. Genetic lineages of undifferentiated-type gastric carcinomas analysed by unsupervised clustering of genomic DNA microarray data. BMC Med Genomics 2013; 6: 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. da Costa Jde F, Leal MF, Silva TC, Andrade Junior EF, Rezende AP, Muniz JA et al. Experimental gastric carcinogenesis in Cebus apella nonhuman primates. PLoS One 2011; 6: e21988.

    Article  CAS  PubMed  Google Scholar 

  92. Calcagno DQ, Leal MF, Demachki S, Araujo MT, Freitas FW, Oliveira e Souza D et al. MYC in gastric carcinoma and intestinal metaplasia of young adults. Cancer Genet Cytogenet 2010; 202: 63–66.

    Article  CAS  PubMed  Google Scholar 

  93. Kim HK, Choi IJ, Kim CG, Kim HS, Oshima A, Yamada Y et al. Three-gene predictor of clinical outcome for gastric cancer patients treated with chemotherapy. Pharmacogenomics J 2012; 12: 119–127.

    Article  CAS  PubMed  Google Scholar 

  94. Wang X, Liu Y, Shao D, Qian Z, Dong Z, Sun Y et al. Recurrent amplification of MYC and TNFRSF11B in 8q24 is associated with poor survival in patients with gastric cancer. Gastric Cancer e-pub ahead of print 25 January 2015.

  95. de Souza CR, Leal MF, Calcagno DQ, Costa Sozinho EK, Borges Bdo N, Montenegro RC et al. MYC deregulation in gastric cancer and its clinicopathological implications. PLoS One 2013; 8: e64420.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Choi JS, Seo J, Jung EJ, Kim EJ, Lee GK, Kim WH . c-MYC amplification in mucinous gastric carcinoma: a possible genetic alteration leading to deeply invasive tumors. Anticancer Res 2012; 32: 8.

    Google Scholar 

  97. Zhao S, Yuan Q, Hao H, Guo Y, Liu S, Zhang Y et al. Expression of OCT4 pseudogenes in human tumours: lessons from glioma and breast carcinoma. J Pathol 2011; 223: 672–682.

    Article  CAS  PubMed  Google Scholar 

  98. Hayashi H, Arao T, Togashi Y, Kato H, Fujita Y, De Velasco MA et al. The OCT4 pseudogene POU5F1B is amplified and promotes an aggressive phenotype in gastric cancer. Oncogene 2015; 34: 199–208.

    Article  CAS  PubMed  Google Scholar 

  99. Matsuoka T, Yashiro M . Recent advances in the HER2 targeted therapy of gastric cancer. World J Clin Cases 2015; 3: 42–51.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sheng WQ, Huang D, Ying JM, Lu N, Wu HM, Liu YH et al. HER2 status in gastric cancers: a retrospective analysis from four Chinese representative clinical centers and assessment of its prognostic significance. Ann Oncol 2013; 24: 2360–2364.

    Article  CAS  PubMed  Google Scholar 

  101. Garcia-Garcia E, Gomez-Martin C, Angulo B, Conde E, Suarez-Gauthier A, Adrados M et al. Hybridization for human epidermal growth factor receptor 2 testing in gastric carcinoma: a comparison of fluorescence in-situ hybridization with a novel fully automated dual-colour silver in-situ hybridization method. Histopathology 2011; 59: 8–17.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zhu GJ, Xu CW, Fang MY, Zhang YP, Li Y . Detection of Her-2/neu expression in gastric cancer: Quantitative PCR versus immunohistochemistry. Exp Ther Med 2014; 8: 1501–1507.

    Article  PubMed  PubMed Central  Google Scholar 

  103. He C, Bian XY, Ni XZ, Shen DP, Shen YY, Liu H et al. Correlation of human epidermal growth factor receptor 2 expression with clinicopathological characteristics and prognosis in gastric cancer. World J Gastroenterol 2013; 19: 2171–2178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shim JH, Yoon JH, Choi SS, Ashktorab H, Smoot DT, Song KY et al. The effect of Helicobacter pylori CagA on the HER-2 copy number and expression in gastric cancer. Gene 2014; 546: 288–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee HE, Park KU, Yoo SB, Nam SK, Park do J, Kim HH et al. Clinical significance of intratumoral HER2 heterogeneity in gastric cancer. Eur J Cancer 2013; 49: 1448–1457.

    Article  CAS  PubMed  Google Scholar 

  106. Fox SB, Kumarasinghe MP, Armes JE, Bilous M, Cummings MC, Farshid G et al. Gastric HER2 testing study (GaTHER): an evaluation of gastric/gastroesophageal junction cancer testing accuracy in Australia. Am J Surg Pathol 2012; 36: 6.

    Google Scholar 

  107. Stenzinger A, von Winterfeld M, Aulmann S, Warth A, Weichert W, Denkert C et al. Quantitative analysis of diagnostic guidelines for HER2-status assessment. J Mol Diagn 2012; 14: 199–205.

    Article  PubMed  Google Scholar 

  108. Okines AF, Cunningham D . Trastuzumab in gastric cancer. Eur J Cancer 2010; 46: 1949–1959.

    Article  CAS  PubMed  Google Scholar 

  109. Park YS, Hwang HS, Park HJ, Ryu MH, Chang HM, Yook JH et al. Comprehensive analysis of HER2 expression and gene amplification in gastric cancers using immunohistochemistry and in situ hybridization: which scoring system should we use? Hum Pathol 2012; 43: 413–422.

    Article  CAS  PubMed  Google Scholar 

  110. Chen K, Yang D, Li X, Sun B, Song F, Cao W et al. Mutational landscape of gastric adenocarcinoma in Chinese: Implications for prognosis and therapy. Proc Natl Acad Sci USA 2015; 112: 1107–1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ozaki T, Nakagawara A . p53: the attractive tumor suppressor in the cancer research field. J Biomed Biotechnol 2011; 2011: 603925.

    Article  CAS  PubMed  Google Scholar 

  112. Xu J, Wang J, Hu Y, Qian J, Xu B, Chen H et al. Unequal prognostic potentials of p53 gain-of-function mutations in human cancers associate with drug-metabolizing activity. Cell Death Dis 2014; 5: e1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bellini MF, Cadamuro AC, Succi M, Proenca MA, Silva AE . Alterations of the TP53 gene in gastric and esophageal carcinogenesis. J Biomed Biotechnol 2012; 2012: 891961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Suzuki K, Matsubara H . Recent advances in p53 research and cancer treatment. J Biomed Biotechnol 2011; 2011: 978312.

    PubMed  PubMed Central  Google Scholar 

  115. Wang J, Qian J, Hu Y, Kong X, Chen H, Shi Q et al. ArhGAP30 promotes p53 acetylation and function in colorectal cancer. Nat Commun 2014; 5: 4735.

    Article  CAS  PubMed  Google Scholar 

  116. Fassan M, Simbolo M, Bria E, Mafficini A, Pilotto S, Capelli P et al. High-throughput mutation profiling identifies novel molecular dysregulation in high-grade intraepithelial neoplasia and early gastric cancers. Gastric Cancer 2014; 17: 442–449.

    Article  PubMed  Google Scholar 

  117. Karaman A, Eşrefkabalar M, Nasir Binic D, Öztürk C, Pirim I . Genetic alterations in gastric precancerous lesions. Genetic Couns 2010; 21: 439–450.

    CAS  Google Scholar 

  118. Dar AA, Goff LW, Majid S, Berlin J, El-Rifai W . Aurora kinase inhibitors—rising stars in cancer therapeutics? Mol Cancer Ther 2010; 9: 268–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Katsha A, Arras J, Soutto M, Belkhiri A, El-Rifai W . AURKA regulates JAK2-STAT3 activity in human gastric and esophageal cancers. Mol Oncol 2014; 8: 1419–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Katsha A, Soutto M, Sehdev V, Peng D, Washington MK, Piazuelo MB et al. Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia. Gastroenterology 2013; 145: e1311–e1318.

    Article  CAS  Google Scholar 

  121. Dar AA, Zaika A, Piazuelo MB, Correa P, Koyama T, Belkhiri A et al. Frequent overexpression of Aurora Kinase A in upper gastrointestinal adenocarcinomas correlates with potent antiapoptotic functions. Cancer 2008; 112: 1688–1698.

    Article  CAS  PubMed  Google Scholar 

  122. ÖZdemİR M, ÖZnur M, ÇİFtÇİ E, Durak Aras B, Aslan H, Saygili H et al. Detection of kinase amplifications in gastric adenocarcinomas. Turk J Med Sci 2014; 44: 461–470.

    Article  Google Scholar 

  123. Yen CC, Yeh CN, Cheng CT, Jung SM, Huang SC, Chang TW et al. Integrating bioinformatics and clinicopathological research of gastrointestinal stromal tumors: identification of aurora kinase A as a poor risk marker. Ann Surg Oncol 2012; 19: 3491–3499.

    Article  PubMed  Google Scholar 

  124. Fang Z, Xiong Y, Li J, Liu L, Li M, Zhang C et al. Copy-number increase of AURKA in gastric cancers in a Chinese population: a correlation with tumor progression. Med Oncol 2011; 28: 1017–1022.

    Article  CAS  PubMed  Google Scholar 

  125. Cheng L, Wang P, Yang S, Yang Y, Zhang Q, Zhang W et al. Identification of genes with a correlation between copy number and expression in gastric cancer. BMC Med Genomics 2012; 5: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lee MC, Toh LL, Yaw LP, Luo Y . Drosophila octamer elements and Pdm-1 dictate the coordinated transcription of core histone genes. J Biol Chem 2010; 285: 9041–9053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Maddox J, Shakya A, South S, Shelton D, Andersen JN, Chidester S et al. Transcription factor Oct1 is a somatic and cancer stem cell determinant. PLoS Genet 2012; 8: e1003048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Parmar NR, Solanki JV, Patel AB, Shah TM, Patel AK, Parnerkar S et al. Metagenome of Mehsani buffalo rumen microbiota: an assessment of variation in feed-dependent phylogenetic and functional classification. J Mol Microbiol Biotechnol 2014; 24: 249–261.

    Article  CAS  PubMed  Google Scholar 

  129. Hwang-Verslues WW, Chang PH, Jeng YM, Kuo WH, Chiang PH, Chang YC et al. Loss of corepressor PER2 under hypoxia up-regulates OCT1-mediated EMT gene expression and enhances tumor malignancy. Proc Natl Acad Sci USA 2013; 110: 12331–12336.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Qian J, Kong X, Deng N, Tan P, Chen H, Wang J et al. OCT1 is a determinant of synbindin-related ERK signalling with independent prognostic significance in gastric cancer. Gut 2014; 64: 12.

    Google Scholar 

  131. Kang JU, Koo SH, Kwon KC, Park JW . AMY2 A: A possible tumor-suppressor gene of 1p21.1 loss in gastric carcinoma. Int J Oncol 2010; 36: 1429–1435.

    CAS  PubMed  Google Scholar 

  132. Kim O, Yoon JH, Choi WS, Ashktorab H, Smoot DT, Nam SW et al. Gastrokine 1 inhibits gastrin-induced cell proliferation. Gastric Cancer e-pub ahead of print 10 March 2015.

  133. Yoon JH, Song JH, Zhang C, Jin M, Kang YH, Nam SW et al. Inactivation of the Gastrokine 1 gene in gastric adenomas and carcinomas. J Pathol 2011; 223: 618–625.

    Article  CAS  PubMed  Google Scholar 

  134. Das K, Gunasegaran B, Tan IB, Deng N, Lim KH, Tan P . Mutually exclusive FGFR2, HER2, and KRAS gene amplifications in gastric cancer revealed by multicolour FISH. Cancer Lett 2014; 353: 167–175.

    Article  CAS  PubMed  Google Scholar 

  135. Chang J, Wang S, Zhang Z, Liu X, Wu Z, Geng R et al. Multiple receptor tyrosine kinase activation attenuates therapeutic efficacy of the fibroblast growth factor receptor 2 inhibitor AZD4547 in FGFR2 amplified gastric cancer. Oncotarget 2015; 6: 2009–2022.

    PubMed  Google Scholar 

  136. Matsumoto K, Arao T, Hamaguchi T, Shimada Y, Kato K, Oda I et al. FGFR2 gene amplification and clinicopathological features in gastric cancer. Br J Cancer 2012; 106: 727–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Oshima T, Masuda M . Molecular targeted agents for gastric and gastroesophageal junction cancer. Surg Today 2012; 42: 313–327.

    Article  CAS  PubMed  Google Scholar 

  138. Liu YY, Chen HY, Zhang ML, Tian D, Li S, Lee JY . Loss of fragile histidine triad and amplification of 1p36.22 and 11p15.5 in primary gastric adenocarcinomas. World J Gastroenterol 2012; 18: 4522–4532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010; 463: 899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kuo WH, Huang CY, Fu CK, Liao CH, Hsieh YH, Hsu CM et al. The significant association of CCND1 genotypes with gastric cancer in Taiwan. Anticancer Res 2014; 34: 4963–4968.

    CAS  PubMed  Google Scholar 

  141. Stahl P, Seeschaaf C, Lebok P, Kutup A, Bockhorn M, Izbicki JR et al. Heterogeneity of amplification of HER2, EGFR, CCND1 and MYC in gastric cancer. BMC Gastroenterol 2015; 15: 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kang JU, Koo SH . ORAOV1 is a probable target within the 11q13.3 amplicon in lymph node metastases from gastric adenocarcinoma. Int J Mol Med 2012; 29: 81–87.

    CAS  PubMed  Google Scholar 

  143. An J, Pan Y, Yan Z, Li W, Cui J, Yuan J et al. MiR-23a in amplified 19p13.13 loci targets metallothionein 2A and promotes growth in gastric cancer cells. J Cell Biochem 2013; 114: 2160–2169.

    Article  CAS  PubMed  Google Scholar 

  144. Hung WY, Wu CW, Yin PH, Chang CJ, Li AF, Chi CW et al. Somatic mutations in mitochondrial genome and their potential roles in the progression of human gastric cancer. Biochim Biophys Acta 2010; 1800: 264–270.

    Article  CAS  PubMed  Google Scholar 

  145. Liao LM, Baccarelli A, Shu XO, Gao YT, Ji BT, Yang G et al. Mitochondrial DNA copy number and risk of gastric cancer: a report from the Shanghai Women's Health Study. Cancer Epidemiol Biomarkers Prev 2011; 20: 1944–1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bi R, Li WL, Chen MQ, Zhu Z, Yao YG . Rapid identification of mtDNA somatic mutations in gastric cancer tissues based on the mtDNA phylogeny. Mutat Res 2011; 709-710: 15–20.

    Article  CAS  PubMed  Google Scholar 

  147. Lee HC, Huang KH, Yeh TS, Chi CW . Somatic alterations in mitochondrial DNA and mitochondrial dysfunction in gastric cancer progression. World J Gastroenterol 2014; 20: 3950–3959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Weinberg SE, Chandel NS . Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 2015; 11: 9–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fulda S, Galluzzi L, Kroemer G . Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 2010; 9: 447–464.

    Article  CAS  PubMed  Google Scholar 

  150. Fernandes J, Michel V, Camorlinga-Ponce M, Gomez A, Maldonado C, De Reuse H et al. Circulating mitochondrial DNA level, a noninvasive biomarker for the early detection of gastric cancer. Cancer Epidemiol Biomarkers Prev 2014; 23: 2430–2438.

    Article  CAS  PubMed  Google Scholar 

  151. Wen SL, Zhang F, Feng S . Decreased copy number of mitochondrial DNA: A potential diagnostic criterion for gastric cancer. Oncol Lett 2013; 6: 1098–1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Amgalan B, Lee H . DEOD: uncovering dominant effects of cancer-driver genes based on a partial covariance selection method. Bioinformatics e-pub ahead of print 26 March 2015.

  153. Hou JP, Ma J . DawnRank: discovering personalized driver genes in cancer. Genome Med 2014; 6: 56.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from National Natural Science Foundation of China (30971330, 31371420, 81320108024, 81000861, 81322036 and 81272383); Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 81421001), the Program for Innovative Research Team of Shanghai Municipal Education Commission; Shanghai 'Oriental Scholars' project (2013XJ); Shanghai Science and Technology Commission 'Pujiang Project' (13PJ1405900) and Shanghai Natural Science Foundation (12ZR1417900). The sponsors of this study had no role in the analysis and interpretation of the literatures, the decision to submit the manuscript for publication or the writing of the manuscript.

Author Contributions

JX conceived this work. LL, JYF and JX wrote the paper. JX generated the schematic representation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J-Y Fang or J Xu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Fang, JY. & Xu, J. Gastric cancer and gene copy number variation: emerging cancer drivers for targeted therapy. Oncogene 35, 1475–1482 (2016). https://doi.org/10.1038/onc.2015.209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.209

This article is cited by

Search

Quick links