Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Tumor progression and the different faces of the PERK kinase

Abstract

The serine/threonine endoplasmic reticulum (ER) kinase, protein kinase R (PKR)-like ER kinase (PERK), is a pro-adaptive protein kinase whose activity is regulated indirectly by protein misfolding within the ER. As the oxidative folding environment in the ER is sensitive to a variety of cellular stresses, many of which occur during neoplastic transformation and in the tumor microenvironment, there has been considerable interest in defining whether PERK positively contributes to tumor progression and whether it represents a significant therapeutic target. Herein, we review the current knowledge of PERK-dependent signaling pathways, the contribution of downstream substrates including recently characterized new PERK substrates transcription factors Forkhead box O protein and diacyglycerol a lipid signaling second messenger, and efforts to develop small molecule PERK inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Schroder M . The unfolded protein response. Mol Biotechnol 2006; 34: 279–290.

    CAS  PubMed  Google Scholar 

  2. Schroder M . Endoplasmic reticulum stress responses. Cell Mol Life Sci 2008; 65: 862–894.

    CAS  PubMed  Google Scholar 

  3. Ulianich L, Insabato L . Endoplasmic reticulum stress in endometrial cancer. Front Med (Lausanne) 2014; 1: 55.

    Google Scholar 

  4. Volmer R, Ron D . Lipid-dependent regulation of the unfolded protein response. Curr Opin Cell Biol 2015; 33C: 67–73.

    Google Scholar 

  5. Tirasophon W, Welihinda AA, Kaufman RJ . A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev 1998; 12: 1812–1824.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yoshida H, Haze K, Yanagi H, Yura T, Mori K . Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 1998; 273: 33741–33749.

    CAS  PubMed  Google Scholar 

  7. Lee AH, Iwakoshi NN, Glimcher LH . XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 2003; 23: 7448–7459.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002; 415: 92–96.

    CAS  PubMed  Google Scholar 

  9. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K . XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001; 107: 881–891.

    CAS  PubMed  Google Scholar 

  10. Upton JP, Wang L, Han D, Wang ES, Huskey NE, Lim L et al. IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic caspase-2. Science 2012; 338: 818–822.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Haze K, Yoshida H, Yanagi H, Yura T, Mori K . Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 1999; 10: 3787–3799.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Okada T, Haze K, Nadanaka S, Yoshida H, Seidah NG, Hirano Y et al. A serine protease inhibitor prevents endoplasmic reticulum stress-induced cleavage but not transport of the membrane-bound transcription factor ATF6. J Biol Chem 2003; 278: 31024–31032.

    CAS  PubMed  Google Scholar 

  13. Shen J, Chen X, Hendershot L, Prywes R . ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 2002; 3: 99–111.

    CAS  PubMed  Google Scholar 

  14. Harding HP, Zhang Y, Ron D . Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999; 397: 271–274.

    Article  CAS  PubMed  Google Scholar 

  15. Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 1998; 18: 7499–7509.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA . Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 2003; 23: 7198–7209.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang W, Hietakangas V, Wee S, Lim SC, Gunaratne J, Cohen SM . ER stress potentiates insulin resistance through PERK-mediated FOXO phosphorylation. Genes Dev 2013; 27: 441–449.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bobrovnikova-Marjon E, Pytel D, Riese MJ, Vaites LP, Singh N, Koretzky GA et al. PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation. Mol Cell Biol 2012; 32: 2268–2278.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Blais JD, Filipenko V, Bi M, Harding HP, Ron D, Koumenis C et al. Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol 2004; 24: 7469–7482.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N et al. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 2002; 22: 7405–7416.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee AH, Yoshida H et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res 2004; 64: 5943–5947.

    CAS  PubMed  Google Scholar 

  22. Ron D, Walter P . Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8: 519–529.

    Article  CAS  PubMed  Google Scholar 

  23. Saito S, Furuno A, Sakurai J, Sakamoto A, Park HR, Shin-Ya K et al. Chemical genomics identifies the unfolded protein response as a target for selective cancer cell killing during glucose deprivation. Cancer Res 2009; 69: 4225–4234.

    CAS  PubMed  Google Scholar 

  24. de la Cadena SG, Hernandez-Fonseca K, Camacho-Arroyo I, Massieu L . Glucose deprivation induces reticulum stress by the PERK pathway and caspase-7- and calpain-mediated caspase-12 activation. Apoptosis 2014; 19: 414–427.

    PubMed  Google Scholar 

  25. Watowich SS, Morimoto RI, Lamb RA . Flux of the paramyxovirus hemagglutinin-neuraminidase glycoprotein through the endoplasmic reticulum activates transcription of the GRP78-BiP gene. J Virol 1991; 65: 3590–3597.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dimcheff DE, Askovic S, Baker AH, Johnson-Fowler C, Portis JL . Endoplasmic reticulum stress is a determinant of retrovirus-induced spongiform neurodegeneration. J Virol 2003; 77: 12617–12629.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Isler JA, Skalet AH, Alwine JC . Human cytomegalovirus infection activates and regulates the unfolded protein response. J Virol 2005; 79: 6890–6899.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cox JS, Chapman RE, Walter P . The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol Biol Cell 1997; 8: 1805–1814.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J . The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 1988; 332: 462–464.

    CAS  PubMed  Google Scholar 

  30. Pineau L, Colas J, Dupont S, Beney L, Fleurat-Lessard P, Berjeaud JM et al. Lipid-induced ER stress: synergistic effects of sterols and saturated fatty acids. Traffic 2009; 10: 673–690.

    CAS  PubMed  Google Scholar 

  31. Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 2003; 5: 781–792.

    CAS  PubMed  Google Scholar 

  32. Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A . Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology 2006; 147: 3398–3407.

    CAS  PubMed  Google Scholar 

  33. Devries-Seimon T, Li Y, Yao PM, Stone E, Wang Y, Davis RJ et al. Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. J Cell Biol 2005; 171: 61–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Malhi H, Gores GJ . Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis 2008; 28: 360–369.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kincaid MM, Cooper AA . ERADicate ER stress or die trying. Antioxid Redox Signal 2007; 9: 2373–2387.

    CAS  PubMed  Google Scholar 

  36. Marciniak SJ, Ron D . Endoplasmic reticulum stress signaling in disease. Physiol Rev 2006; 86: 1133–1149.

    CAS  PubMed  Google Scholar 

  37. Kim I, Xu W, Reed JC . Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 2008; 7: 1013–1030.

    CAS  PubMed  Google Scholar 

  38. Hoozemans JJ, Veerhuis R, Van Haastert ES, Rozemuller JM, Baas F, Eikelenboom P et al. The unfolded protein response is activated in Alzheimer's disease. Acta Neuropathol 2005; 110: 165–172.

    CAS  PubMed  Google Scholar 

  39. Chang RC, Wong AK, Ng HK, Hugon J . Phosphorylation of eukaryotic initiation factor-2alpha (eIF2alpha) is associated with neuronal degeneration in Alzheimer's disease. Neuroreport 2002; 13: 2429–2432.

    CAS  PubMed  Google Scholar 

  40. Atkins C, Liu Q, Minthorn E, Zhang SY, Figueroa DJ, Moss K et al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 2013; 73: 1993–2002.

    CAS  PubMed  Google Scholar 

  41. Axten JM, Medina JR, Feng Y, Shu A, Romeril SP, Grant SW et al. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J Med Chem 2012; 55: 7193–7207.

    CAS  PubMed  Google Scholar 

  42. Axten JM, Romeril SP, Shu A, Ralph J, Medina JR, Feng Y et al. Discovery of GSK2656157: an optimized PERK inhibitor selected for preclinical development. ACS Med Chem Lett 2013; 4: 964–968.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pytel D, Seyb K, Liu M, Ray SS, Concannon J, Huang M et al. Enzymatic characterization of ER stress-dependent kinase, PERK, and development of a high-throughput assay for identification of PERK inhibitors. J Biomol Screen 2014; 19: 1024–1034.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S, Tam A et al. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 2011; 117: 1311–1314.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Volkmann K, Lucas JL, Vuga D, Wang X, Brumm D, Stiles C et al. Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J Biol Chem 2011; 286: 12743–12755.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cross BC, Bond PJ, Sadowski PG, Jha BK, Zak J, Goodman JM et al. The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc Natl Acad Sci USA 2012; 109: E869–E878.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ghosh R, Wang L, Wang ES, Perera BG, Igbaria A, Morita S et al. Allosteric inhibition of the IRE1alpha RNase preserves cell viability and function during endoplasmic reticulum stress. Cell 2014; 158: 534–548.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Brewer JW, Cleveland JL, Hendershot LM . A pathway distinct from the mammalian unfolded protein response regulates expression of endoplasmic reticulum chaperones in non-stressed cells. EMBO J 1997; 16: 7207–7216.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ma K, Vattem KM, Wek RC . Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress. J Biol Chem 2002; 277: 18728–18735.

    CAS  PubMed  Google Scholar 

  50. Ye J, Kumanova M, Hart LS, Sloane K, Zhang H, De Panis DN et al. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. Embo J 2010; 29: 2082–2096.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chikka MR, McCabe DD, Tyra HM, Rutkowski DT . C/EBP homologous protein (CHOP) contributes to suppression of metabolic genes during endoplasmic reticulum stress in the liver*. J Biol Chem 2013; 288: 4405–4415.

    CAS  PubMed  Google Scholar 

  52. DeZwaan-McCabe D, Riordan JD, Arensdorf AM, Icardi MS, Dupuy AJ, Rutkowski DT . The stress-regulated transcription factor CHOP promotes hepatic inflammatory gene expression, fibrosis, and oncogenesis. PLoS Genet 2013; 9: e1003937.

    PubMed  PubMed Central  Google Scholar 

  53. Brewer JW, Diehl JA . PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci USA 2000; 97: 12625–12630.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Brewer JW, Hendershot LM, Sherr CJ, Diehl JA . Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression. Proc Natl Acad Sci USA 1999; 96: 8505–8510.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hamanaka RB, Bennett BS, Cullinan SB, Diehl JA . PERK and GCN2 contribute to eIF2alpha phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway. Mol Biol Cell 2005; 16: 5493–5501.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cox JS, Walter P . A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 1996; 87: 391–404.

    CAS  PubMed  Google Scholar 

  57. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998; 12: 982–995.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 2013; 15: 481–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sherr CJ . G1 phase progression: cycling on cue. Cell 1994; 79: 551–555.

    CAS  PubMed  Google Scholar 

  60. Morgan DO . Principles of CDK regulation. Nature 1995; 374: 131–134.

    CAS  PubMed  Google Scholar 

  61. Sherr CJ, Roberts JM . Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 1995; 9: 1149–1163.

    CAS  PubMed  Google Scholar 

  62. Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM et al. The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. Embo J 1999; 18: 1571–1583.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev 1997; 11: 847–862.

    CAS  PubMed  Google Scholar 

  64. Blain SW, Montalvo E, Massague J . Differential interaction of the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 with cyclin A-Cdk2 and cyclin D2-Cdk4. J Biol Chem 1997; 272: 25863–25872.

    CAS  PubMed  Google Scholar 

  65. Hall M, Peters G . Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res 1996; 68: 67–108.

    CAS  PubMed  Google Scholar 

  66. Hamanaka RB, Bobrovnikova-Marjon E, Ji X, Liebhaber SA, Diehl JA . PERK-dependent regulation of IAP translation during ER stress. Oncogene 2009; 28: 910–920.

    CAS  PubMed  Google Scholar 

  67. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 2000; 6: 1099–1108.

    CAS  PubMed  Google Scholar 

  68. Miller PF, Hinnebusch AG . Cis-acting sequences involved in the translational control of GCN4 expression. Biochim Biophys Acta 1990; 1050: 151–154.

    CAS  PubMed  Google Scholar 

  69. Yaman I, Fernandez J, Liu H, Caprara M, Komar AA, Koromilas AE et al. The zipper model of translational control: a small upstream ORF is the switch that controls structural remodeling of an mRNA leader. Cell 2003; 113: 519–531.

    CAS  PubMed  Google Scholar 

  70. Qian Z, Xuan B, Chapa TJ, Gualberto N, Yu D . Murine cytomegalovirus targets transcription factor ATF4 to exploit the unfolded-protein response. J Virol 2012; 86: 6712–6723.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. B'Chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y et al. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res 2013; 41: 7683–7699.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hart LS, Cunningham JT, Datta T, Dey S, Tameire F, Lehman SL et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Invest 2012; 122: 4621–4634.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sabharwal SS, Schumacker PT . Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? Nat Rev Cancer 2014; 14: 709–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 2005; 1: 401–408.

    CAS  PubMed  Google Scholar 

  75. Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 2005; 1: 409–414.

    CAS  PubMed  Google Scholar 

  76. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 2004; 24: 7130–7139.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA . The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 2004; 24: 8477–8486.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M . Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 2004; 24: 10941–10953.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Furukawa M, Xiong Y . BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 2005; 25: 162–171.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Cullinan SB, Diehl JA . Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol 2006; 38: 317–332.

    CAS  PubMed  Google Scholar 

  81. Frohlich DA, McCabe MT, Arnold RS, Day ML . The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene 2008; 27: 4353–4362.

    CAS  PubMed  Google Scholar 

  82. Petzer JP, Navamal M, Johnson JK, Kwak MK, Kensler TW, Fishbein JC . Phase 2 enzyme induction by the major metabolite of oltipraz. Chem Res Toxicol 2003; 16: 1463–1469.

    CAS  PubMed  Google Scholar 

  83. Kanamori M, Higa T, Sonoda Y, Murakami S, Dodo M, Kitamura H et al. Activation of the NRF2 pathway and its impact on the prognosis of anaplastic glioma patients. Neuro Oncol 2014; 17: 555–565.

    PubMed  PubMed Central  Google Scholar 

  84. Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R, Tsuta K et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci USA 2008; 105: 13568–13573.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bobrovnikova-Marjon E, Grigoriadou C, Pytel D, Zhang F, Ye J, Koumenis C et al. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene 2010; 29: 3881–3895.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL . Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 1999; 274: 26071–26078.

    CAS  PubMed  Google Scholar 

  87. Chan K, Kan YW . Nrf2 is essential for protection against acute pulmonary injury in mice. Proc Natl Acad Sci USA 1999; 96: 12731–12736.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997; 236: 313–322.

    CAS  PubMed  Google Scholar 

  89. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 1999; 13: 76–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nguyen T, Huang HC, Pickett CB . Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. J Biol Chem 2000; 275: 15466–15473.

    CAS  PubMed  Google Scholar 

  91. Venugopal R, Jaiswal AK . Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci USA 1996; 93: 14960–14965.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wild AC, Moinova HR, Mulcahy RT . Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem 1999; 274: 33627–33636.

    CAS  PubMed  Google Scholar 

  93. Chan JY, Kwong M . Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein. Biochim Biophys Acta 2000; 1517: 19–26.

    CAS  PubMed  Google Scholar 

  94. Hayes JD, Chanas SA, Henderson CJ, McMahon M, Sun C, Moffat GJ et al. The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin. Biochem Soc Trans 2000; 28: 33–41.

    CAS  PubMed  Google Scholar 

  95. Leung L, Kwong M, Hou S, Lee C, Chan JY . Deficiency of the Nrf1 and Nrf2 transcription factors results in early embryonic lethality and severe oxidative stress. J Biol Chem 2003; 278: 48021–48029.

    CAS  PubMed  Google Scholar 

  96. Li W, Yu S, Liu T, Kim JH, Blank V, Li H et al. Heterodimerization with small Maf proteins enhances nuclear retention of Nrf2 via masking the NESzip motif. Biochim Biophys Acta 2008; 1783: 1847–1856.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Dhakshinamoorthy S, Jaiswal AK . Small maf (MafG and MafK) proteins negatively regulate antioxidant response element-mediated expression and antioxidant induction of the NAD(P)H:Quinone oxidoreductase1 gene. J Biol Chem 2000; 275: 40134–40141.

    CAS  PubMed  Google Scholar 

  98. Gong P, Hu B, Stewart D, Ellerbe M, Figueroa YG, Blank V et al. Cobalt induces heme oxygenase-1 expression by a hypoxia-inducible factor-independent mechanism in Chinese hamster ovary cells: regulation by Nrf2 and MafG transcription factors. J Biol Chem 2001; 276: 27018–27025.

    CAS  PubMed  Google Scholar 

  99. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D . Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 2000; 5: 897–904.

    CAS  PubMed  Google Scholar 

  100. Del Vecchio CA, Feng Y, Sokol ES, Tillman EJ, Sanduja S, Reinhardt F et al. De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling. PLoS Biol 2014; 12: e1001945.

    PubMed  PubMed Central  Google Scholar 

  101. Weigel D, Jurgens G, Kuttner F, Seifert E, Jackle H . The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 1989; 57: 645–658.

    CAS  PubMed  Google Scholar 

  102. Huang H, Tindall DJ . Dynamic FoxO transcription factors. J Cell Sci 2007; 120: 2479–2487.

    CAS  PubMed  Google Scholar 

  103. Hu P, Han Z, Couvillon AD, Exton JH . Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J Biol Chem 2004; 279: 49420–49429.

    CAS  PubMed  Google Scholar 

  104. Carbajo-Pescador S, Mauriz JL, Garcia-Palomo A, Gonzalez-Gallego J . FoxO proteins: regulation and molecular targets in liver cancer. Curr Med Chem 2014; 21: 1231–1246.

    CAS  PubMed  Google Scholar 

  105. Keniry M, Pires MM, Mense S, Lefebvre C, Gan B, Justiano K et al. Survival factor NFIL3 restricts FOXO-induced gene expression in cancer. Genes Dev 2013; 27: 916–927.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Fu Z, Tindall DJ . FOXOs, cancer and regulation of apoptosis. Oncogene 2008; 27: 2312–2319.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Xie L, Ushmorov A, Leithauser F, Guan H, Steidl C, Farbinger J et al. FOXO1 is a tumor suppressor in classical Hodgkin lymphoma. Blood 2012; 119: 3503–3511.

    CAS  PubMed  Google Scholar 

  108. Spitzer JA, Deaciuc IV, Rodriguez de Turco EB, Roth BL, Hermiller JB, Mehegan JP . Modification of protein kinase C (PKC) activity and diacylglycerol (DAG) accumulation in hepatocytes in continuous endotoxemia. Prog Clin Biol Res 1989; 308: 575–588.

    CAS  PubMed  Google Scholar 

  109. Poli A, Ramazzotti G, Matteucci A, Manzoli L, Lonetti A, Suh PG et al. A novel DAG-dependent mechanism links PKCa and Cyclin B1 regulating cell cycle progression. Oncotarget 2014; 5: 115–140.

    Google Scholar 

  110. Szendroedi J, Yoshimura T, Phielix E, Koliaki C, Marcucci M, Zhang D et al. Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci USA 2014; 111: 9597–9602.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Natalini PM, Mateos MV, Ilincheta de Boschero MG, Giusto NM . A novel light-dependent activation of DAGK and PKC in bovine photoreceptor nuclei. Exp Eye Res 2014; 125: 142–155.

    CAS  PubMed  Google Scholar 

  112. Mor A, Campi G, Du G, Zheng Y, Foster DA, Dustin ML et al. The lymphocyte function-associated antigen-1 receptor costimulates plasma membrane Ras via phospholipase D2. Nat Cell Biol 2007; 9: 713–719.

    CAS  PubMed  Google Scholar 

  113. Zhao C, Du G, Skowronek K, Frohman MA, Bar-Sagi D . Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat Cell Biol 2007; 9: 706–712.

    CAS  PubMed  Google Scholar 

  114. Rizzo MA, Shome K, Vasudevan C, Stolz DB, Sung TC, Frohman MA et al. Phospholipase D and its product, phosphatidic acid, mediate agonist-dependent raf-1 translocation to the plasma membrane and the activation of the mitogen-activated protein kinase pathway. J Biol Chem 1999; 274: 1131–1139.

    CAS  PubMed  Google Scholar 

  115. Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J . Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 2001; 294: 1942–1945.

    CAS  PubMed  Google Scholar 

  116. Toschi A, Lee E, Xu L, Garcia A, Gadir N, Foster DA . Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol Cell Biol 2009; 29: 1411–1420.

    CAS  PubMed  Google Scholar 

  117. Lim HK, Choi YA, Park W, Lee T, Ryu SH, Kim SY et al. Phosphatidic acid regulates systemic inflammatory responses by modulating the Akt-mammalian target of rapamycin-p70 S6 kinase 1 pathway. J Biol Chem 2003; 278: 45117–45127.

    CAS  PubMed  Google Scholar 

  118. Bobrovnikova-Marjon E, Hatzivassiliou G, Grigoriadou C, Romero M, Cavener DR, Thompson CB et al. PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation. Proc Natl Acad Sci USA 2008; 105: 16314–16319.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Desvergne B, Michalik L, Wahli W . Transcriptional regulation of metabolism. Physiol Rev 2006; 86: 465–514.

    CAS  PubMed  Google Scholar 

  120. Espenshade PJ, Hughes AL . Regulation of sterol synthesis in eukaryotes. Annu Rev Genet 2007; 41: 401–427.

    CAS  PubMed  Google Scholar 

  121. Kim YI, Park K, Kim JY, Seo HS, Shin KO, Lee YM et al. An endoplasmic reticulum stress-initiated sphingolipid metabolite, ceramide-1-phosphate, regulates epithelial innate immunity by stimulating beta-defensin production. Mol Cell Biol 2014; 34: 4368–4378.

    PubMed  PubMed Central  Google Scholar 

  122. Volmer R, van der Ploeg K, Ron D . Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc Natl Acad Sci USA 2013; 110: 4628–4633.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Shiozaki K, Takahashi K, Hosono M, Yamaguchi K, Hata K, Shiozaki M et al. Phosphatidic acid-mediated activation and translocation to the cell surface of sialidase NEU3, promoting signaling for cell migration. FASEB J 2015; 29: 2099–2111.

    CAS  PubMed  Google Scholar 

  124. Gupta S, Read DE, Deepti A, Cawley K, Gupta A, Oommen D et al. Perk-dependent repression of miR-106b-25 cluster is required for ER stress-induced apoptosis. Cell Death Dis 2012; 3: e333.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chitnis NS, Pytel D, Bobrovnikova-Marjon E, Pant D, Zheng H, Maas NL et al. miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol Cell 2012; 48: 353–364.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR et al. Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol 2003; 23: 5651–5663.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N et al. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 2004; 24: 10161–10168.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Byrd AE, Aragon IV, Brewer JW . MicroRNA-30c-2* limits expression of proadaptive factor XBP1 in the unfolded protein response. J Cell Biol 2012; 196: 689–698.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Chitnis N, Pytel D, Diehl JA . UPR-inducible miRNAs contribute to stressful situations. Trends Biochem Sci 2013; 38: 447–452.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Coelho DS, Domingos PM . Physiological roles of regulated Ire1 dependent decay. Front Genet 2014; 5: 76.

    PubMed  PubMed Central  Google Scholar 

  131. Suzuki HI, Arase M, Matsuyama H, Choi YL, Ueno T, Mano H et al. MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell 2011; 44: 424–436.

    CAS  PubMed  Google Scholar 

  132. Balkwill FR, Capasso M, Hagemann T . The tumor microenvironment at a glance. J Cell Sci 2012; 125: 5591–5596.

    CAS  PubMed  Google Scholar 

  133. Ackerman D, Simon MC . Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol 2014; 24: 472–478.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J 2005; 24: 3470–3481.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 2001; 7: 1153–1163.

    CAS  PubMed  Google Scholar 

  136. Zhang P, McGrath B, Li S, Frank A, Zambito F, Reinert J et al. The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol 2002; 22: 3864–3874.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang W, Feng D, Li Y, Iida K, McGrath B, Cavener DR . PERK EIF2AK3 control of pancreatic beta cell differentiation and proliferation is required for postnatal glucose homeostasis. Cell Metab 2006; 4: 491–497.

    CAS  PubMed  Google Scholar 

  138. Gao Y, Sartori DJ, Li C, Yu QC, Kushner JA, Simon MC et al. PERK is required in the adult pancreas and is essential for maintenance of glucose homeostasis. Mol Cell Biol 2012; 32: 5129–5139.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Kusio-Kobialka M, Podszywalow-Bartnicka P, Peidis P, Glodkowska-Mrowka E, Wolanin K, Leszak G et al. The PERK-eIF2alpha phosphorylation arm is a pro-survival pathway of BCR-ABL signaling and confers resistance to imatinib treatment in chronic myeloid leukemia cells. Cell Cycle 2012; 11: 4069–4078.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 2006; 124: 587–599.

    CAS  PubMed  Google Scholar 

  141. Mahadevan NR, Rodvold J, Sepulveda H, Rossi S, Drew AF, Zanetti M . Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells. Proc Natl Acad Sci USA 2011; 108: 6561–6566.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Garg AD, Kaczmarek A, Krysko O, Vandenabeele P, Krysko DV, Agostinis P . ER stress-induced inflammation: does it aid or impede disease progression? Trends Mol Med 2012; 18: 589–598.

    CAS  PubMed  Google Scholar 

  143. Mahadevan NR, Anufreichik V, Rodvold JJ, Chiu KT, Sepulveda H, Zanetti M . Cell-extrinsic effects of tumor ER stress imprint myeloid dendritic cells and impair CD8(+) T cell priming. PLoS One 2012; 7: e51845.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Meares GP, Liu Y, Rajbhandari R, Qin H, Nozell SE, Mobley JA et al. PERK-dependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-induced inflammation. Mol Cell Biol 2014; 34: 3911–3925.

    PubMed  PubMed Central  Google Scholar 

  145. Wang M, Kaufman RJ . The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 2014; 14: 581–597.

    CAS  PubMed  Google Scholar 

  146. Yan Y, Gao YY, Liu BQ, Niu XF, Zhuang Y, Wang HQ . Resveratrol-induced cytotoxicity in human Burkitt's lymphoma cells is coupled to the unfolded protein response. BMC Cancer 2010; 10: 445.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Oda T, Kosuge Y, Arakawa M, Ishige K, Ito Y . Distinct mechanism of cell death is responsible for tunicamycin-induced ER stress in SK-N-SH and SH-SY5Y cells. Neurosci Res 2008; 60: 29–39.

    CAS  PubMed  Google Scholar 

  148. Mohammad MK, Avila D, Zhang J, Barve S, Arteel G, McClain C et al. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress. Toxicol Appl Pharmacol 2012; 265: 73–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang S, Kaufman RJ . The impact of the unfolded protein response on human disease. J Cell Biol 2012; 197: 857–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Bhattacharya S, HuangFu WC, Dong G, Qian J, Baker DP, Karar J et al. Anti-tumorigenic effects of type 1 interferon are subdued by integrated stress responses. Oncogene 2013; 32: 4214–4221.

    CAS  PubMed  Google Scholar 

  151. Hami LS, Green C, Leshinsky N, Markham E, Miller K, Craig S . GMP production and testing of Xcellerated T Cells for the treatment of patients with CLL. Cytotherapy 2004; 6: 554–562.

    CAS  PubMed  Google Scholar 

  152. Bhattacharya S, Zheng H, Tzimas C, Carroll M, Baker DP, Fuchs SY . Bcr-abl signals to desensitize chronic myeloid leukemia cells to IFNalpha via accelerating the degradation of its receptor. Blood 2011; 118: 4179–4187.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Rosalia RA, Silva AL, Camps M, Allam A, Jiskoot W, van der Burg SH et al. Efficient ex vivo induction of T cells with potent anti-tumor activity by protein antigen encapsulated in nanoparticles. Cancer Immunol Immunother 2013; 62: 1161–1173.

    CAS  PubMed  Google Scholar 

  154. Lin W, Bailey SL, Ho H, Harding HP, Ron D, Miller SD et al. The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. J Clin Invest 2007; 117: 448–456.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Lees JR, Cross AH . A little stress is good: IFN-Î3, demyelination, and multiple sclerosis. J Clin Invest 2007; 117: 297–299.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA . Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J Neurosci 2002; 22: 10690–10698.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Hoozemans JJ, van Haastert ES, Eikelenboom P, de Vos RA, Rozemuller JM, Scheper W . Activation of the unfolded protein response in Parkinson's disease. Biochem Biophys Res Commun 2007; 354: 707–711.

    CAS  PubMed  Google Scholar 

  158. Nagata T, Ilieva H, Murakami T, Shiote M, Narai H, Ohta Y et al. Increased ER stress during motor neuron degeneration in a transgenic mouse model of amyotrophic lateral sclerosis. Neurol Res 2007; 29: 767–771.

    PubMed  Google Scholar 

  159. Wilhelmus MM, Verhaar R, Andringa G, Bol JG, Cras P, Shan L et al. Presence of tissue transglutaminase in granular endoplasmic reticulum is characteristic of melanized neurons in Parkinson's disease brain. Brain Pathol 2011; 21: 130–139.

    CAS  PubMed  Google Scholar 

  160. Wang L, Popko B, Roos RP . The unfolded protein response in familial amyotrophic lateral sclerosis. Hum Mol Genet 2011; 20: 1008–1015.

    CAS  PubMed  Google Scholar 

  161. Wang L, Popko B, Tixier E, Roos RP . Guanabenz, which enhances the unfolded protein response, ameliorates mutant SOD1-induced amyotrophic lateral sclerosis. Neurobiol Dis 2014; 71: 317–324.

    CAS  PubMed  Google Scholar 

  162. Moreno JA, Radford H, Peretti D, Steinert JR, Verity N, Martin MG et al. Sustained translational repression by eIF2alpha-P mediates prion neurodegeneration. Nature 2012; 485: 507–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Finnie JW, Manavis J, Blumbergs PC, Kuchel TR . Axonal and neuronal amyloid precursor protein immunoreactivity in the brains of guinea pigs given tunicamycin. Vet Pathol 2000; 37: 677–680.

    CAS  PubMed  Google Scholar 

  164. Moreno JA, Halliday M, Molloy C, Radford H, Verity N, Axten JM et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med 2013; 5: 206ra138.

    PubMed  Google Scholar 

  165. Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr., Lee KP, Boise LH . Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 2006; 107: 4907–4916.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grant CA104838 (JAD); Polish National Science Centre (NCN) ‘HARMONIA 5’ grant no. 2013/10/M/N21/00280.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D Pytel or J A Diehl.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pytel, D., Majsterek, I. & Diehl, J. Tumor progression and the different faces of the PERK kinase. Oncogene 35, 1207–1215 (2016). https://doi.org/10.1038/onc.2015.178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.178

This article is cited by

Search

Quick links